Nuprl Lemma : length-eq-lists-diff-elts
∀[T:Type]
  ∀eq:∀x,y:T.  Dec(x = y ∈ T). ∀L1,L2:T List.
    (no_repeats(T;L1) 
⇒ (||L1|| ≥ ||L2|| ) 
⇒ (∃x:T. ((x ∈ L2) ∧ (¬(x ∈ L1)))) 
⇒ (∃x:T. ((x ∈ L1) ∧ (¬(x ∈ L2)))))
Proof
Definitions occuring in Statement : 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
length: ||as||
, 
list: T List
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
decidable__l_exists, 
not_wf, 
l_member_wf, 
decidable__not, 
decidable__l_member, 
l_exists_iff, 
not-l_exists, 
l_all_iff, 
deq-exists, 
select_wf, 
sq_stable__le, 
select_member, 
filter_wf5, 
bnot_wf, 
lelt_wf, 
length_wf, 
equal_wf, 
member_filter, 
int_seg_subtype-nat, 
false_wf, 
less_than_wf, 
iff_transitivity, 
assert_wf, 
eqof_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
safe-assert-deq, 
int_seg_wf, 
exists_wf, 
ge_wf, 
no_repeats_wf, 
list_wf, 
all_wf, 
decidable_wf, 
zero-le-nat, 
non_neg_length, 
length_wf_nat, 
decidable__equal_int_seg, 
le_wf, 
nat_wf, 
iff_weakening_equal, 
squash_wf, 
pigeon-hole, 
length-filter-decreases, 
less_than_transitivity1, 
less_than_irreflexivity, 
set_wf, 
l_exists_wf, 
l_exists_functionality
Latex:
\mforall{}[T:Type]
    \mforall{}eq:\mforall{}x,y:T.    Dec(x  =  y).  \mforall{}L1,L2:T  List.
        (no\_repeats(T;L1)
        {}\mRightarrow{}  (||L1||  \mgeq{}  ||L2||  )
        {}\mRightarrow{}  (\mexists{}x:T.  ((x  \mmember{}  L2)  \mwedge{}  (\mneg{}(x  \mmember{}  L1))))
        {}\mRightarrow{}  (\mexists{}x:T.  ((x  \mmember{}  L1)  \mwedge{}  (\mneg{}(x  \mmember{}  L2)))))
Date html generated:
2015_07_22-PM-00_17_23
Last ObjectModification:
2015_02_04-PM-04_39_28
Home
Index