Nuprl Lemma : length-filter-decreases

[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L:T List].  ((∃x∈L. ¬↑(P x))  ||filter(P;L)|| < ||L||)


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) length: ||as|| filter: filter(P;l) list: List assert: b bool: 𝔹 less_than: a < b uall: [x:A]. B[x] not: ¬A implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: all: x:A. B[x] so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a top: Top bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False l_exists: (∃x∈L. P[x]) int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A less_than: a < b squash: T select: L[n] cons: [a b] ge: i ≥  le: A ≤ B
Lemmas referenced :  list_induction l_exists_wf l_member_wf not_wf assert_wf less_than_wf length_wf filter_wf5 subtype_rel_dep_function bool_wf subtype_rel_self set_wf list_wf filter_nil_lemma length_of_nil_lemma l_exists_wf_nil filter_cons_lemma length_of_cons_lemma eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot member-less_than int_seg_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf intformnot_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_add_lemma decidable__equal_int int_subtype_base select-cons-tl intformeq_wf int_formula_prop_eq_lemma subtract_wf decidable__le itermSubtract_wf int_term_value_subtract_lemma non_neg_length lelt_wf select_wf length-filter
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality cumulativity lambdaFormation hypothesis setElimination rename applyEquality functionExtensionality because_Cache setEquality independent_isectElimination independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_pairFormation promote_hyp instantiate universeEquality natural_numberEquality int_eqEquality intEquality independent_pairFormation computeAll addEquality imageElimination dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].    ((\mexists{}x\mmember{}L.  \mneg{}\muparrow{}(P  x))  {}\mRightarrow{}  ||filter(P;L)||  <  ||L||)



Date html generated: 2017_04_17-AM-07_51_29
Last ObjectModification: 2017_02_27-PM-04_25_51

Theory : list_1


Home Index