Nuprl Lemma : length-filter-decreases
∀[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L:T List].  ((∃x∈L. ¬↑(P x)) ⇒ ||filter(P;L)|| < ||L||)
Proof
Definitions occuring in Statement : 
l_exists: (∃x∈L. P[x]), 
length: ||as||, 
filter: filter(P;l), 
list: T List, 
assert: ↑b, 
bool: 𝔹, 
less_than: a < b, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
all: ∀x:A. B[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
top: Top, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
l_exists: (∃x∈L. P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
less_than: a < b, 
squash: ↓T, 
select: L[n], 
cons: [a / b], 
ge: i ≥ j , 
le: A ≤ B
Lemmas referenced : 
list_induction, 
l_exists_wf, 
l_member_wf, 
not_wf, 
assert_wf, 
less_than_wf, 
length_wf, 
filter_wf5, 
subtype_rel_dep_function, 
bool_wf, 
subtype_rel_self, 
set_wf, 
list_wf, 
filter_nil_lemma, 
length_of_nil_lemma, 
l_exists_wf_nil, 
filter_cons_lemma, 
length_of_cons_lemma, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
member-less_than, 
int_seg_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
intformnot_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_add_lemma, 
decidable__equal_int, 
int_subtype_base, 
select-cons-tl, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
subtract_wf, 
decidable__le, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
non_neg_length, 
lelt_wf, 
select_wf, 
length-filter
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
lambdaFormation, 
hypothesis, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
because_Cache, 
setEquality, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
universeEquality, 
natural_numberEquality, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
addEquality, 
imageElimination, 
dependent_set_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].    ((\mexists{}x\mmember{}L.  \mneg{}\muparrow{}(P  x))  {}\mRightarrow{}  ||filter(P;L)||  <  ||L||)
Date html generated:
2017_04_17-AM-07_51_29
Last ObjectModification:
2017_02_27-PM-04_25_51
Theory : list_1
Home
Index