Nuprl Lemma : Q-R-glues-conditional
∀[Info:Type]
  ∀es:EO+(Info)
    ∀[Q1,Q2,R:E ─→ E ─→ ℙ]. ∀[A,B:Type].
      ∀Ia1,Ia2:EClass(A). ∀Ib1,Ib2:EClass(B). ∀f:E([Ia1?Ia2]) ─→ B. ∀g1:E(Ib1) ─→ E(Ia1). ∀g2:E(Ib2) ─→ E(Ia2).
        (g1 glues Ia1:Q1 ──f─→ Ib1:R
           
⇒ g2 glues Ia2:Q2 ──f─→ Ib2:R
           
⇒ [{Ib1}? g1 : g2] glues [Ia1?Ia2]:Q1|{Ia1} ∨ Q2|{Ia2} ──f─→ [Ib1?Ib2]:R) supposing 
           (Ib1 ∩ Ib2 = 0 and 
           Ia1 ∩ Ia2 = 0)
Proof
Definitions occuring in Statement : 
Q-R-glues: g glues Ia:Qa ──f─→ Ib:Rb
, 
es-interface-disjoint: X ∩ Y = 0
, 
es-E-interface: E(X)
, 
es-interface-predicate: {I}
, 
cond-class: [X?Y]
, 
in-eclass: e ∈b X
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
conditional: [P? f : g]
, 
es-E: E
, 
rel-restriction: R|P
, 
rel_or: R1 ∨ R2
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
bool-decider: bool-decider(b)
Lemmas : 
assert_wf, 
in-eclass_wf, 
es-interface-subtype_rel2, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
top_wf, 
Q-R-glues_wf, 
subtype_rel_dep_function, 
es-E-interface_wf, 
cond-class_wf, 
es-E-interface-conditional-subtype2, 
es-E-interface-conditional-subtype1, 
es-interface-disjoint_wf, 
eclass_wf, 
es-interface-predicate_wf, 
predicate_or_wf, 
interface_predicate_set_lemma, 
conditional_wf-interface, 
weak-antecedent-surjection_functionality_wrt_pred_equiv, 
es-interface-conditional-predicate-equivalent, 
decidable__assert, 
bool-decider_wf, 
weak-antecedent-surjection-conditional2, 
is-cond-class, 
rel_or_wf, 
rel-restriction_wf, 
set_wf, 
exists_wf, 
equal_wf, 
subtype_rel_self, 
Q-R-pre-preserving_functionality_wrt_implies, 
predicate_implies_weakening, 
rel_implies_weakening, 
rel_equivalent_weakening, 
rel_equivalent_inversion, 
rel_or_idempotent, 
predicate_equivalent_weakening, 
es-E-interface-property, 
rel-restriction-implies, 
Q-R-pre-preserving-conditional, 
decidable_wf, 
es-interface-conditional-domain-member, 
equal_functionality_wrt_subtype_rel2, 
assert_elim, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
bool_cases, 
eqtt_to_assert, 
eqff_to_assert, 
assert_of_bnot, 
conditional_wf2, 
es-E-interface-conditional, 
cond-class-val, 
iff_weakening_equal, 
eclass-val_wf, 
bool_cases_sqequal, 
assert-bnot
Latex:
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info)
        \mforall{}[Q1,Q2,R:E  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[A,B:Type].
            \mforall{}Ia1,Ia2:EClass(A).  \mforall{}Ib1,Ib2:EClass(B).  \mforall{}f:E([Ia1?Ia2])  {}\mrightarrow{}  B.  \mforall{}g1:E(Ib1)  {}\mrightarrow{}  E(Ia1).
            \mforall{}g2:E(Ib2)  {}\mrightarrow{}  E(Ia2).
                (g1  glues  Ia1:Q1  {}{}f{}\mrightarrow{}  Ib1:R
                      {}\mRightarrow{}  g2  glues  Ia2:Q2  {}{}f{}\mrightarrow{}  Ib2:R
                      {}\mRightarrow{}  [\{Ib1\}?  g1  :  g2]  glues  [Ia1?Ia2]:Q1|\{Ia1\}  \mvee{}  Q2|\{Ia2\}  {}{}f{}\mrightarrow{}  [Ib1?Ib2]:R)  supposing 
                      (Ib1  \mcap{}  Ib2  =  0  and 
                      Ia1  \mcap{}  Ia2  =  0)
Date html generated:
2015_07_21-PM-04_10_32
Last ObjectModification:
2015_02_04-PM-06_17_32
Home
Index