Nuprl Lemma : es-interface-sublist_wf
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(Top)]. ∀[z:E List].  (es-interface-sublist(X;z) ∈ E(X) List)
Proof
Definitions occuring in Statement : 
es-interface-sublist: es-interface-sublist(X;z)
, 
es-E-interface: E(X)
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
universe: Type
Lemmas : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
equal-wf-T-base, 
colength_wf_list, 
list-cases, 
filter_nil_lemma, 
nil_wf, 
es-E-interface_wf, 
product_subtype_list, 
spread_cons_lemma, 
sq_stable__le, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
nat_wf, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-commutes, 
le_wf, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
minus-minus, 
add-swap, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
filter_cons_lemma, 
in-eclass_wf, 
bool_wf, 
eqtt_to_assert, 
cons_wf, 
assert_wf, 
list_wf, 
es-E_wf, 
event-ordering+_subtype, 
eclass_wf, 
top_wf, 
event-ordering+_wf
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[z:E  List].
    (es-interface-sublist(X;z)  \mmember{}  E(X)  List)
Date html generated:
2015_07_17-PM-00_55_42
Last ObjectModification:
2015_01_27-PM-10_48_28
Home
Index