Nuprl Lemma : es-first-at-implies-first-at

es:EO. ∀i:Id.
  ∀[P:{e:E| loc(e) i ∈ Id}  ─→ ℙ]
    ∀e:E
      (e is first@ s.t.  e.P[e]
       {∀[Q:{e:E| loc(e) i ∈ Id}  ─→ ℙ]
            (e is first@ s.t.  e.Q[e] ⇐⇒ Q[e] ∧ ∀e'<e.e' is first@ s.t.  e.Q[e]  P[e'])})


Proof




Definitions occuring in Statement :  es-first-at: is first@ s.t.  e.P[e] alle-lt: e<e'.P[e] es-loc: loc(e) es-E: E event_ordering: EO Id: Id uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ─→ B[x] equal: t ∈ T
Lemmas :  es-loc_wf es-first-at_wf es-locl_wf Id_wf es-E_wf es-causl-swellfnd nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf int_seg_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf es-causl_weakening es-locl_transitivity2 es-le_weakening equal_wf decidable__lt not-equal-2 le-add-cancel-alt not-le-2 sq_stable__le add-mul-special zero-mul alle-lt_wf event_ordering_wf
\mforall{}es:EO.  \mforall{}i:Id.
    \mforall{}[P:\{e:E|  loc(e)  =  i\}    {}\mrightarrow{}  \mBbbP{}]
        \mforall{}e:E
            (e  is  first@  i  s.t.    e.P[e]
            {}\mRightarrow{}  \{\mforall{}[Q:\{e:E|  loc(e)  =  i\}    {}\mrightarrow{}  \mBbbP{}]
                        (e  is  first@  i  s.t.    e.Q[e]  \mLeftarrow{}{}\mRightarrow{}  Q[e]  \mwedge{}  \mforall{}e'<e.e'  is  first@  i  s.t.    e.Q[e]  {}\mRightarrow{}  P[e'])\})



Date html generated: 2015_07_17-AM-08_50_21
Last ObjectModification: 2015_01_27-PM-01_20_30

Home Index