Nuprl Lemma : first-choosable_wf

[M:Type ─→ Type]. ∀[t:ℕ+]. ∀[r:ℕt ─→ (ℤ × Id × Id × pMsg(P.M[P])? × System(P.M[P]))].  (first-choosable(r;t) ∈ ℕ)


Proof




Definitions occuring in Statement :  first-choosable: first-choosable(r;t) System: System(P.M[P]) pMsg: pMsg(P.M[P]) Id: Id nat_plus: + int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] unit: Unit member: t ∈ T function: x:A ─→ B[x] product: x:A × B[x] union: left right natural_number: $n int: universe: Type
Lemmas :  int_seg_wf Id_wf pMsg_wf unit_wf2 System_wf nat_plus_wf labeled-graph_wf pInTransit_wf subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel subtract-is-less lelt_wf lt_int_wf search_wf lg-size_wf lg-is-source_wf int_seg_subtype-nat nat_wf bool_wf eqtt_to_assert assert_of_lt_int le_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[t:\mBbbN{}\msupplus{}].  \mforall{}[r:\mBbbN{}t  {}\mrightarrow{}  (\mBbbZ{}  \mtimes{}  Id  \mtimes{}  Id  \mtimes{}  pMsg(P.M[P])?  \mtimes{}  System(P.M[P]))].
    (first-choosable(r;t)  \mmember{}  \mBbbN{})



Date html generated: 2015_07_23-AM-11_16_55
Last ObjectModification: 2015_01_28-PM-11_18_36

Home Index