Nuprl Lemma : first-choosable_wf
∀[M:Type ─→ Type]. ∀[t:ℕ+]. ∀[r:ℕt ─→ (ℤ × Id × Id × pMsg(P.M[P])? × System(P.M[P]))].  (first-choosable(r;t) ∈ ℕ)
Proof
Definitions occuring in Statement : 
first-choosable: first-choosable(r;t)
, 
System: System(P.M[P])
, 
pMsg: pMsg(P.M[P])
, 
Id: Id
, 
nat_plus: ℕ+
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
product: x:A × B[x]
, 
union: left + right
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
Lemmas : 
int_seg_wf, 
Id_wf, 
pMsg_wf, 
unit_wf2, 
System_wf, 
nat_plus_wf, 
labeled-graph_wf, 
pInTransit_wf, 
subtract_wf, 
decidable__le, 
false_wf, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
subtract-is-less, 
lelt_wf, 
lt_int_wf, 
search_wf, 
lg-size_wf, 
lg-is-source_wf, 
int_seg_subtype-nat, 
nat_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
le_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[t:\mBbbN{}\msupplus{}].  \mforall{}[r:\mBbbN{}t  {}\mrightarrow{}  (\mBbbZ{}  \mtimes{}  Id  \mtimes{}  Id  \mtimes{}  pMsg(P.M[P])?  \mtimes{}  System(P.M[P]))].
    (first-choosable(r;t)  \mmember{}  \mBbbN{})
Date html generated:
2015_07_23-AM-11_16_55
Last ObjectModification:
2015_01_28-PM-11_18_36
Home
Index