Nuprl Lemma : run-lt-step-less
∀[M:Type ─→ Type]. ∀[r:pRunType(P.M[P])].
  ∀[x,y:runEvents(r)].  run-event-step(x) < run-event-step(y) supposing x run-lt(r) y 
  supposing ∀e:runEvents(r). fst(fst(run-info(r;e))) < run-event-step(e)
Proof
Definitions occuring in Statement : 
run-lt: run-lt(r)
, 
run-event-step: run-event-step(e)
, 
runEvents: runEvents(r)
, 
run-info: run-info(r;e)
, 
pRunType: pRunType(T.M[T])
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
run-pred-step-less, 
rel_exp_one, 
runEvents_wf, 
run-pred_wf, 
infix_ap_wf, 
rel_exp_wf, 
false_wf, 
le_wf, 
nat_plus_properties, 
rel_exp_iff, 
less_than_transitivity2, 
run-event-step_wf, 
le_weakening2, 
less-iff-le, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
decidable__le, 
not-le-2, 
add-swap, 
all_wf, 
less_than_wf, 
nat_plus_wf, 
primrec-wf-nat-plus, 
nat_plus_subtype_nat, 
run-lt_wf, 
member-less_than, 
nat_wf, 
run-info_wf, 
Id_wf, 
pMsg_wf, 
pRunType_wf, 
less_than_transitivity1, 
subtract_wf, 
le_weakening, 
squash_wf, 
true_wf, 
and_wf, 
equal_wf
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:pRunType(P.M[P])].
    \mforall{}[x,y:runEvents(r)].    run-event-step(x)  <  run-event-step(y)  supposing  x  run-lt(r)  y 
    supposing  \mforall{}e:runEvents(r).  fst(fst(run-info(r;e)))  <  run-event-step(e)
Date html generated:
2015_07_23-AM-11_15_23
Last ObjectModification:
2015_01_29-AM-00_05_54
Home
Index