Nuprl Lemma : consensus-refinement4

[V:Type]
  ((v1,v2:V.  Dec(v1 = v2))
   (v,v':V. ((v = v')))
   (A:Id List. W:{a:Id| (a  A)}  List List.
        (((1 < ||W||)  two-intersection(A;W))
         ts-refinement(consensus-ts4(V;A;W);consensus-ts5(V;A;W);s.(fst(s))))))


Proof not projected




Definitions occuring in Statement :  consensus-ts5: consensus-ts5(V;A;W) two-intersection: two-intersection(A;W) consensus-ts4: consensus-ts4(V;A;W) Id: Id length: ||as|| decidable: Dec(P) uall: [x:A]. B[x] pi1: fst(t) all: x:A. B[x] exists: x:A. B[x] not: A implies: P  Q and: P  Q less_than: a < b set: {x:A| B[x]}  lambda: x.A[x] list: type List natural_number: $n universe: Type equal: s = t l_member: (x  l) ts-refinement: ts-refinement(ts1;ts2;f)
Definitions :  uall: [x:A]. B[x] implies: P  Q all: x:A. B[x] and: P  Q ts-refinement: ts-refinement(ts1;ts2;f) member: t  T prop: so_lambda: x.t[x] consensus-ts4: consensus-ts4(V;A;W) ts-rel: ts-rel(ts) ts-init: ts-init(ts) pi1: fst(t) consensus-ts5: consensus-ts5(V;A;W) pi2: snd(t) btrue: tt bfalse: ff reduce: reduce(f;k;as) deq-member: deq-member(eq;x;L) ifthenelse: if b then t else f fi  consensus-state4: ConsensusState eqof: eqof(d) guard: {T} bor: p q Id: Id exists: x:A. B[x] infix_ap: x f y consensus-rel: CR[x,y] fpf-empty: cs-inning: Inning(s;a) cs-estimate: Estimate(s;a) or: P  Q fpf-domain: fpf-domain(f) cand: A c B top: Top ts-type: ts-type(ts) true: True uimplies: b supposing a squash: T subtype: S  T cs-knowledge: Knowledge(x;a) iff: P  Q rev_implies: P  Q so_apply: x[s] unit: Unit bool: false: False decidable: Dec(P) uiff: uiff(P;Q) sq_type: SQType(T) not: A l_contains: A  B consensus-rel-add-knowledge-step: consensus-rel-add-knowledge-step(V;A;W;x1;x2;y1;y2;a) consensus-rel-knowledge-archive-step: consensus-rel-knowledge-archive-step(V;A;W;x1;x2;y1;y2;a) consensus-rel-knowledge-inning-step: consensus-rel-knowledge-inning-step(V;A;W;x1;x2;y1;y2;a) consensus-rel-knowledge-step: consensus-rel-knowledge-step(V;A;W;x1;x2;y1;y2;a) consensus-rel-knowledge: consensus-rel-knowledge(V;A;W;x;y) ts-reachable: ts-reachable(ts) cs-knowledge-precondition: may consider v in inning i based on knowledge (s) le: A  B it: eq_id: a = b
Lemmas :  and_wf less_than_wf length_wf Id_wf l_member_wf two-intersection_wf exists_wf not_wf equal_wf all_wf decidable_wf l_contains_wf not_functionality_wrt_iff assert_of_bnot eqff_to_assert assert-deq-member eqtt_to_assert iff_weakening_uiff iff_transitivity bnot_wf assert_wf bool_wf id-deq_wf deq-member_wf consensus-rel_wf fpf-empty_wf consensus-state4_wf rel_star_weakening nil_member l_contains_cons rel_star_transitivity ifthenelse_wf fpf_wf bor_wf eqof_wf decidable__l_member decidable__equal_Id eq_id_wf not_functionality_wrt_uiff assert-eq-id uiff_transitivity atom2_subtype_base subtype_base_sq rel_rel_star pi1_wf_top top_wf or_wf strong-subtype-deq-subtype strong-subtype-set3 strong-subtype-self list-set-type2 cs-precondition_wf fpf-join_wf fpf-single_wf int-deq_wf band_wf assert_of_bor or_functionality_wrt_iff assert_functionality_wrt_uiff bnot_thru_bor assert_of_band and_functionality_wrt_iff l_contains_weakening rel_star_wf ts-type_wf ts-reachable_wf consensus-ts5_wf ts-rel_wf subtype-top subtype-fpf2 cs-estimate_wf fpf-domain_wf cs-inning_wf int_subtype_base false_wf assert_witness subtype_rel_simple_product subtype_rel_self subtype_rel_function fpf-dom_wf le_wf fpf-ap_wf consensus-ts5-true-knowledge true_wf squash_wf member_wf Error :pi2_wf,  pair_wf mk_fpf_wf pair_eta_rw

\mforall{}[V:Type]
    ((\mforall{}v1,v2:V.    Dec(v1  =  v2))
    {}\mRightarrow{}  (\mexists{}v,v':V.  (\mneg{}(v  =  v')))
    {}\mRightarrow{}  (\mforall{}A:Id  List.  \mforall{}W:\{a:Id|  (a  \mmember{}  A)\}    List  List.
                (((1  <  ||W||)  \mwedge{}  two-intersection(A;W))
                {}\mRightarrow{}  ts-refinement(consensus-ts4(V;A;W);consensus-ts5(V;A;W);\mlambda{}s.(fst(s))))))


Date html generated: 2012_01_23-PM-12_06_45
Last ObjectModification: 2011_12_31-AM-11_09_42

Home Index