{ Info:Type. B:{B:Type| valueall-type(B)} . n:. A:n  Type.
  Xs:k:n  EClass(A k).
    ((k:n. Programmable(A k;Xs k))
     (F:Id  k:n  bag(A k)  bag(B)  bag(B)
          ((x:Id. buf:bag(B).  ((F x (k.{}) buf) = {}))
           Programmable(B;F|Loc, Xs, Prior(self)|)))) }

{ Proof }



Definitions occuring in Statement :  programmable: Programmable(A;X) rec-combined-loc-class: f|Loc, X, Prior(self)| eclass: EClass(A[eo; e]) Id: Id int_seg: {i..j} nat: all: x:A. B[x] implies: P  Q set: {x:A| B[x]}  apply: f a lambda: x.A[x] function: x:A  B[x] natural_number: $n universe: Type equal: s = t empty-bag: {} bag: bag(T) valueall-type: valueall-type(T)
Definitions :  spread: spread def pi1: fst(t) decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b es-E-interface: E(X) guard: {T} sq_type: SQType(T) lelt: i  j < k eq_atom: eq_atom$n(x;y) atom: Atom top: Top es-base-E: es-base-E(es) token: "$token" eq_atom: x =a y ifthenelse: if b then t else f fi  record-select: r.x dep-isect: Error :dep-isect,  record+: record+ defined-class: defined-class(prg) eclass-program-type: eclass-program-type(prg) cand: A c B pair: <a, b> bool: eclass-program: eclass-program{i:l}(Info) iff: P  Q event_ordering: EO es-E: E event-ordering+: EO+(Info) real: grp_car: |g| subtype: S  T natural_number: $n empty-bag: {} lambda: x.A[x] limited-type: LimitedType member: t  T fpf-single: x : v fpf-join: f  g strong-subtype: strong-subtype(A;B) ge: i  j  less_than: a < b uimplies: b supposing a and: P  Q uiff: uiff(P;Q) subtype_rel: A r B isect: x:A. B[x] uall: [x:A]. B[x] dataflow: dataflow(A;B) so_lambda: x.t[x] fpf: a:A fp-B[a] product: x:A  B[x] exists: x:A. B[x] false: False not: A le: A  B int: rec-combined-loc-class: f|Loc, X, Prior(self)| equal: s = t Id: Id valueall-type: valueall-type(T) nat: eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] implies: P  Q programmable: Programmable(A;X) apply: f a int_seg: {i..j} prop: all: x:A. B[x] function: x:A  B[x] bag: bag(T) set: {x:A| B[x]}  universe: Type rev_implies: P  Q union: left + right or: P  Q list: type List nat_plus: l_contains: A  B cmp-le: cmp-le(cmp;x;y) inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) squash: T l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) rationals: qle: r  s qless: r < s q-rel: q-rel(r;x) sq_exists: x:{A| B[x]} atom: Atom$n i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome dstype: dstype(TypeNames; d; a) fset-member: a  s f-subset: xs  ys fset: FSet{T} fset-closed: (s closed under fs) IdLnk: IdLnk Knd: Knd MaName: MaName l_disjoint: l_disjoint(T;l1;l2) consensus-state3: consensus-state3(T) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i consensus-rcv: consensus-rcv(V;A) infix_ap: x f y es-causl: (e < e') es-locl: (e <loc e') es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) cut-order: a (X;f) b path-goes-thru: x-f*-y thru i decidable: Dec(P) sqequal: s ~ t void: Void upto: upto(n) map: map(f;as) length: ||as|| fpf-empty: dataflow-program: DataflowProgram(A) df-program-type: df-program-type(dfp) fpf_ap_pair: fpf_ap_pair{fpf_ap_pair_compseq_tag_def:o}(x; eq; f; d) dataflow-set-class: dataflow-set-class(x.P[x]) dataflow-history-val: dataflow-history-val(es;e;x.P[x]) df-program-meaning: df-program-meaning(dfp) null-df-program: null-df-program(B) es-loc: loc(e) listp: A List combination: Combination(n;T) last: last(L) es-info: info(e) es-le-before: loc(e) compose: f o g data-stream: data-stream(P;L) bfalse: ff null: null(as) minus: -n subtract: n - m suptype: suptype(S; T) add: n + m strongwellfounded: SWellFounded(R[x; y]) primed-class: Prior(X) true: True btrue: tt eq_bool: p =b q le_int: i z j eq_int: (i = j) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) name_eq: name_eq(x;y) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b unit: Unit es-pred: pred(e) bag-size: bag-size(bs) lt_int: i <z j es-first: first(e) es-p-le: e p e' es-p-locl: e pe' causal-predecessor: causal-predecessor(es;p) record: record(x.T[x]) fpf-dom: x  dom(f) so_apply: x[s] l_member: (x  l) axiom: Ax uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) bag-member: bag-member(T;x;bs) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g classrel: v  X(e) sq_stable: SqStable(P) select: l[i] base: Base rcv: rcv(l,tg) locl: locl(a) tag-by: zT isect2: T1  T2 stream: stream(A) b-union: A  B deq: EqDecider(T) ma-state: State(ds) class-program: ClassProgram(T) fpf-cap: f(x)?z rec-comb-loc-program: rec-comb-loc-program(F;B;Ps)
Lemmas :  select_wf rec-comb-loc-program_wf subtype_rel_function int_seg_properties sq_stable__subtype_rel subtype_rel_dep_function true_wf subtype_rel_bag subtype_rel-equal sq_stable__and defined-by-rec-comb-loc-program base_wf select-map length_wf1 select_upto es-causl_transitivity2 es-causle_weakening sq_stable__equal sq_stable__all squash_wf iff_wf rev_implies_wf es-pred-causl ifthenelse_wf es-first_wf bnot_wf assert_of_bnot eqff_to_assert uiff_transitivity eqtt_to_assert primed-class-cases assert_of_lt_int bag-size_wf es-pred_wf assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int le_int_wf lt_int_wf primed-class_wf ge_wf le_wf guard_wf nat_ind_tp es-causl-swellfnd es-causl_wf length_wf_nat non_neg_length map_length es-le-before-not-null assert_wf bool_subtype_base bool_wf not_wf false_wf bfalse_wf data-stream-null-df-program map-map map_wf es-loc_wf es-le-before_wf es-info_wf es-le-before_wf2 top_wf es-le_wf last-map df-program-meaning_wf_null dataflow-history-val_wf fpf-empty_wf dataflow-program_wf df-program-type_wf length-map length_upto upto_wf decidable__equal_int subtype_base_sq int_subtype_base eclass_wf int_seg_wf nat_properties programmable_wf programmable-iff all_functionality_wrt_iff eclass-program_wf valueall-type_wf nat_wf event-ordering+_wf event-ordering+_inc es-E_wf bag_wf Id_wf empty-bag_wf fpf_wf dataflow_wf rec-combined-loc-class_wf eclass-program-type_wf es-base-E_wf subtype_rel_self defined-class_wf member_wf es-interface-top es-interface-subtype_rel2 subtype_rel_wf

\mforall{}Info:Type.  \mforall{}B:\{B:Type|  valueall-type(B)\}  .  \mforall{}n:\mBbbN{}.  \mforall{}A:\mBbbN{}n  {}\mrightarrow{}  Type.  \mforall{}Xs:k:\mBbbN{}n  {}\mrightarrow{}  EClass(A  k).
    ((\mforall{}k:\mBbbN{}n.  Programmable(A  k;Xs  k))
    {}\mRightarrow{}  (\mforall{}F:Id  {}\mrightarrow{}  k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(B)
                ((\mforall{}x:Id.  \mforall{}buf:bag(B).    ((F  x  (\mlambda{}k.\{\})  buf)  =  \{\}))
                {}\mRightarrow{}  Programmable(B;F|Loc,  Xs,  Prior(self)|))))


Date html generated: 2011_08_16-PM-06_31_20
Last ObjectModification: 2011_06_06-PM-12_15_28

Home Index