Nuprl Lemma : defined-by-rec-comb-loc-program

[Info:Type]. [B:{A:Type| valueall-type(A)} ]. [Ps:eclass-program{i:l}(Info) List].
  [F:Id  k:||Ps||  bag(eclass-program-type(Ps[k]))  bag(B)  bag(B)]
    defined-class(rec-comb-loc-program(F;B;Ps)) = F|Loc, k.defined-class(Ps[k]), Prior(self)| 
    supposing x:Id. buf:bag(B).  ((F x (k.{}) buf) = {}) 
  supposing 0 < ||Ps||


Proof not projected




Definitions occuring in Statement :  rec-comb-loc-program: rec-comb-loc-program(F;B;Ps) defined-class: defined-class(prg) eclass-program-type: eclass-program-type(prg) eclass-program: eclass-program{i:l}(Info) rec-combined-loc-class: f|Loc, X, Prior(self)| eclass: EClass(A[eo; e]) Id: Id select: l[i] length: ||as|| int_seg: {i..j} uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] less_than: a < b set: {x:A| B[x]}  apply: f a lambda: x.A[x] function: x:A  B[x] list: type List natural_number: $n universe: Type equal: s = t empty-bag: {} bag: bag(T) valueall-type: valueall-type(T)
Definitions :  AssertBY: Error :AssertBY,  all: x:A. B[x] int_seg: {i..j} natural_number: $n length: ||as|| implies: P  Q l_member: (x  l) union-list2: union-list2(eq;ll) id-deq: IdDeq map: map(f;as) lambda: x.A[x] Id: Id fpf-domain: fpf-domain(f) eclass-program-flows: eclass-program-flows(p) select: l[i] MaAuto: Error :MaAuto,  RepUR: Error :RepUR,  CollapseTHEN: Error :CollapseTHEN,  CollapseTHENA: Error :CollapseTHENA,  Auto: Error :Auto,  isect: x:A. B[x] eclass-program: eclass-program{i:l}(Info) eclass-program-type: eclass-program-type(prg) bag: bag(T) function: x:A  B[x] member: t  T uall: [x:A]. B[x] less_than: a < b prop: uimplies: b supposing a list: type List universe: Type equal: s = t eclass: EClass(A[eo; e]) defined-class: defined-class(prg) rec-comb-loc-program: rec-comb-loc-program(F;B;Ps) rec-combined-loc-class: f|Loc, X, Prior(self)| axiom: Ax so_lambda: x y.t[x; y] subtype_rel: A r B uiff: uiff(P;Q) and: P  Q product: x:A  B[x] not: A ge: i  j  le: A  B strong-subtype: strong-subtype(A;B) fpf: a:A fp-B[a] pair: <a, b> apply: f a top: Top limited-type: LimitedType empty-bag: {} int: subtype: S  T rationals: real: set: {x:A| B[x]}  false: False void: Void lelt: i  j < k exists: x:A. B[x] cand: A c B nat: atom: Atom$n dataflow-program: DataflowProgram(A) df-program-type: df-program-type(dfp) so_lambda: x.t[x] iff: P  Q rev_implies: P  Q combination: Combination(n;T) listp: A List bool: fpf-join: f  g fpf-single: x : v fpf-cap: f(x)?z mk_fpf: mk_fpf(L;f) fpf-dom: x  dom(f) fpf_ap_pair: fpf_ap_pair{fpf_ap_pair_compseq_tag_def:o}(x; eq; f; d) spread: spread def dataflow-set-class: dataflow-set-class(x.P[x]) df-program-meaning: df-program-meaning(dfp) ifthenelse: if b then t else f fi  deq-member: deq-member(eq;x;L) fpf-ap: f(x) null-df-program: null-df-program(B) dataflow: dataflow(A;B) corec: corec(T.F[T]) es-E-interface: E(X) union: left + right unit: Unit bnot: b assert: b bor: p q band: p  q bimplies: p  q es-ble: e loc e' es-bless: e <loc e' es-eq-E: e = e' eq_lnk: a = b eq_id: a = b deq-all-disjoint: deq-all-disjoint(eq;ass;bs) deq-disjoint: deq-disjoint(eq;as;bs) btrue: tt bfalse: ff sq_type: SQType(T) guard: {T} deq: EqDecider(T) le_int: i z j lt_int: i <z j nil: [] cons: [car / cdr] or: P  Q so_apply: x[s] event-ordering+: EO+(Info) es-E: E event_ordering: EO quotient: x,y:A//B[x; y] decide: case b of inl(x) =s[x] | inr(y) =t[y] true: True eqof: eqof(d) pi1: fst(t) class-program: ClassProgram(T) squash: T feedback-df-program: feedback-df-program(B;F;buf;P;dfps) bag-size: bag-size(bs) tactic: Error :tactic,  upto: upto(n) better-feedback-dataflow: better-feedback-dataflow(n;ds;F;s;x.P[x]) constant-dataflow: constant-dataflow(b) Knd: Knd locl: locl(a) rcv: rcv(l,tg) ma-state: State(ds) fpf-sub: f  g b-union: A  B isect2: T1  T2 fset: FSet{T} record: record(x.T[x]) record+: record+ tag-by: zT grp_car: |g| dep-isect: Error :dep-isect,  eq_atom: eq_atom$n(x;y) eq_atom: x =a y record-select: r.x es-loc: loc(e) same-thread: same-thread(es;p;e;e') decidable: Dec(P) collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) cut-order: a (X;f) b path-goes-thru: x-f*-y thru i es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) es-fset-loc: i  locs(s) existse-between3: e(e1,e2].P[e] existse-between2: e[e1,e2].P[e] alle-between2: e[e1,e2].P[e] existse-between1: e[e1,e2).P[e] alle-between1: e[e1,e2).P[e] alle-le: ee'.P[e] alle-lt: e<e'.P[e] existse-le: ee'.P[e] existse-before: e<e'.P[e] es-causle: e c e' es-le: e loc e'  es-locl: (e <loc e') es-causl: (e < e') infix_ap: x f y cs-precondition: state s may consider v in inning i cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-inning-committable: in state s, inning i could commit v  cs-inning-committed: in state s, inning i has committed v cs-passed: by state s, a passed inning i without archiving a value cs-archived: by state s, a archived v in inning i cs-not-completed: in state s, a has not completed inning i l_disjoint: l_disjoint(T;l1;l2) fset-closed: (s closed under fs) f-subset: xs  ys fset-member: a  s p-outcome: Outcome i-closed: i-closed(I) i-finite: i-finite(I) sq_exists: x:{A| B[x]} q-rel: q-rel(r;x) qless: r < s qle: r  s fun-connected: y is f*(x) l_all: (xL.P[x]) l_exists: (xL. P[x]) prime: prime(a) reducible: reducible(a) inject: Inj(A;B;f) cmp-le: cmp-le(cmp;x;y) l_contains: A  B consensus-rcv: consensus-rcv(V;A) consensus-state3: consensus-state3(T) MaName: MaName IdLnk: IdLnk primed-class: Prior(X) strongwellfounded: SWellFounded(R[x; y]) subtract: n - m add: n + m minus: -n sqequal: s ~ t atom: Atom es-before: before(e) es-info: info(e) append: as @ bs data-stream: data-stream(P;L) filter: filter(P;l) null: null(as) last: last(L) es-le-before: loc(e) dataflow-history-val: dataflow-history-val(es;e;x.P[x]) base: Base D: Error :D,  iterate-dataflow: P*(inputs) dataflow-ap: df(a) pi2: snd(t) data_stream_nil: data_stream_nil{data_stream_nil_compseq_tag_def:o}(P) suptype: suptype(S; T) permutation: permutation(T;L1;L2) equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) intensional-universe: IType firstn: firstn(n;as) iter_df_nil: iter_df_nil{iter_df_nil_compseq_tag_def:o}(P) iter_df_cons: iter_df_cons{iter_df_cons_compseq_tag_def:o}(as; a; P) hd: hd(l) tl: tl(l) rec_dataflow_ap: rec_dataflow_ap{rec_dataflow_ap_compseq_tag_def:o}(a; v21,v22.next[v21; v22]; s0) eval-parallel-dataflow: eval-parallel-dataflow(n;s;m) dataflow-out: dataflow-out(df;a) primrec: primrec(n;b;c) rec-dataflow: rec-dataflow(s0;s,m.next[s; m]) let: let q_le: q_le(r;s) q_less: q_less(r;s) qeq: qeq(r;s) eq_type: eq_type(T;T') b-exists: (i<n.P[i])_b bl-exists: (xL.P[x])_b bl-all: (xL.P[x])_b dcdr-to-bool: [d] grp_blt: a < b set_blt: a < b eq_int: (i = j) es-interface-prior-vals: X(e) token: "$token" es-base-E: es-base-E(es) RepeatFor: Error :RepeatFor,  rev_uimplies: rev_uimplies(P;Q) label: ...$L... t es-first: first(e) eq_bool: p =b q es-pred: pred(e) causal-predecessor: causal-predecessor(es;p) es-p-locl: e pe' es-p-le: e p e' name_eq: name_eq(x;y) compose: f o g sq_stable: SqStable(P) gt: i > j multiply: n * m iseg: l1  l2 proper-iseg: L1 < L2 list_ind: list_ind def it: inr: inr x 
Lemmas :  it_wf equal-nil-sq-nil pos-length feedback-df-program-type sq_stable__subtype_rel length-map-sq list_extensionality map-map select_upto int_subtype_base select-map feedback-df-program-meaning dataflow-history-val_wf feedback-df-program_wf length_upto constant-data-stream es-le_weakening es-locl_transitivity2 es-pred-locl es-loc-pred es-le-loc es-causl_transitivity2 es-causle_weakening_locl es-pred-causl es-pred_wf es-first_wf primed-class-cases nat_ind_tp guard_wf primed-class_wf last-map data-stream-null-df-program length_append length_cons non_neg_length length_nil length-data-stream length-map non_null_iff_length iff_wf rev_implies_wf bfalse_wf es-le-before-not-null es-le_wf es-le-before_wf2 null-map member_null null-data-stream es-base-E_wf es-le-before_wf subtype_rel_list list-subtype not_functionality_wrt_uiff assert_of_null last-cons pos_length2 null_wf3 filter_wf le_int_wf assert_of_le_int bnot_of_lt_int assert_functionality_wrt_uiff assert_of_lt_int uiff_transitivity append_wf last_wf Error :pi1_wf,  iterate-dataflow_wf rec-dataflow_wf eval-parallel-dataflow_wf dataflow-out_wf isect_subtype_base primrec_wf product_subtype_base Error :pi2_wf,  dataflow-ap_wf eval-parallel-dataflow-property firstn_wf upto_wf inject_wf intensional-universe_wf refl_wf sym_wf trans_wf equiv_rel_wf quotient_wf permutation_wf subtype_rel_function last_append data-stream_wf data-stream-cons data-stream-append es-info_wf es-before_wf es-before_wf3 map_append_sq prior-dataflow-set-class atom2_subtype_base primed-class-equal es-locl_wf es-causl_wf le_wf es-causl-swellfnd nat_properties ge_wf es-loc_wf decidable__equal_Id decidable__l_member constant-dataflow_wf bag-size_wf lt_int_wf eclass-ext better-feedback-dataflow_wf unit_wf pi1_wf_top subtype_rel_bag bool_cases subtype_base_sq bool_subtype_base int_seg_properties null-df-program_wf event-ordering+_inc rec-combined-loc-class_wf squash_wf subtype_rel_self dataflow_subtype false_wf fpf-dom_wf true_wf member-fpf-dom es-interface-top event-ordering+_wf es-E_wf df-program-meaning_wf_null deq-member_wf fpf-domain_wf2 bnot_wf not_functionality_wrt_iff assert_of_bnot eqff_to_assert not_wf assert-deq-member eqtt_to_assert iff_weakening_uiff assert_wf iff_transitivity bool_wf dataflow_wf dataflow-set-class_wf ifthenelse_wf fpf-ap_wf df-program-meaning_wf union-list2_wf select_member length_wf_nat member_map map_wf id-deq_wf member-union-list2 df-program-type_wf fpf-trivial-subtype-top subtype_rel_wf member_wf top_wf fpf_wf dataflow-program_wf eclass-program-flows_wf fpf-domain_wf nat_wf l_member_wf Error :eclass_wf,  rec-comb-loc-program_wf defined-class_wf bag_wf eclass-program-type_wf select_wf empty-bag_wf Id_wf int_seg_wf eclass-program_wf length_wf

\mforall{}[Info:Type].  \mforall{}[B:\{A:Type|  valueall-type(A)\}  ].  \mforall{}[Ps:eclass-program\{i:l\}(Info)  List].
    \mforall{}[F:Id  {}\mrightarrow{}  k:\mBbbN{}||Ps||  {}\mrightarrow{}  bag(eclass-program-type(Ps[k]))  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(B)]
        defined-class(rec-comb-loc-program(F;B;Ps))  =  F|Loc,  \mlambda{}k.defined-class(Ps[k]),  Prior(self)| 
        supposing  \mforall{}x:Id.  \mforall{}buf:bag(B).    ((F  x  (\mlambda{}k.\{\})  buf)  =  \{\}) 
    supposing  0  <  ||Ps||


Date html generated: 2012_02_20-PM-02_50_52
Last ObjectModification: 2012_01_07-PM-02_00_05

Home Index