Nuprl Lemma : member-p-union
∀p:FinProbSpace. ∀A,B:p-open(p). ∀s:ℕ ─→ Outcome.  (s ∈ p-union(A;B) 
⇐⇒ s ∈ A ∨ s ∈ B)
Proof
Definitions occuring in Statement : 
p-union: p-union(A;B)
, 
p-open-member: s ∈ C
, 
p-open: p-open(p)
, 
p-outcome: Outcome
, 
finite-prob-space: FinProbSpace
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
function: x:A ─→ B[x]
Lemmas : 
exists_wf, 
nat_wf, 
equal-wf-T-base, 
eq_int_wf, 
subtype_rel_dep_function, 
p-outcome_wf, 
int_seg_wf, 
int_seg_subtype-nat, 
false_wf, 
subtype_rel_self, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
or_wf, 
set_wf, 
all_wf, 
le_wf, 
finite-prob-space_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
int_subtype_base, 
uiff_transitivity
\mforall{}p:FinProbSpace.  \mforall{}A,B:p-open(p).  \mforall{}s:\mBbbN{}  {}\mrightarrow{}  Outcome.    (s  \mmember{}  p-union(A;B)  \mLeftarrow{}{}\mRightarrow{}  s  \mmember{}  A  \mvee{}  s  \mmember{}  B)
Date html generated:
2015_07_17-AM-08_00_29
Last ObjectModification:
2015_01_27-AM-11_22_23
Home
Index