Nuprl Lemma : rv-iid-add

p:FinProbSpace. ∀f:ℕ ─→ ℕ. ∀X,Y:n:ℕ ─→ RandomVariable(p;f[n]).
  (rv-iid(p;n.f[n];n.X[n])
   rv-iid(p;n.f[n];n.Y[n])
   (∀n:ℕ. ∀i:ℕ1.  (rv-disjoint(p;f[n];Y[i];X[n]) ∧ rv-disjoint(p;f[n];X[i];Y[n])))
   rv-iid(p;n.f[n];n.X[n] Y[n]))


Proof




Definitions occuring in Statement :  rv-iid: rv-iid(p;n.f[n];i.X[i]) rv-disjoint: rv-disjoint(p;n;X;Y) rv-add: Y random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace int_seg: {i..j-} nat: so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ─→ B[x] add: m natural_number: $n
Lemmas :  decidable__equal_int le_weakening int_seg_subtype-nat false_wf sq_stable__le le_wf and_wf equal_wf nat_wf le_weakening2 subtype_rel-random-variable int_seg_wf all_wf rv-disjoint_wf rv-iid_wf random-variable_wf finite-prob-space_wf decidable__lt not-equal-2 add_functionality_wrt_le add-swap add-commutes le-add-cancel less-iff-le condition-implies-le add-associates minus-add minus-one-mul zero-add le-add-cancel2 lelt_wf rationals_wf qadd_wf iff_weakening_equal qmul_wf int-subtype-rationals expectation_wf rv-add_wf expectation-rv-add squash_wf true_wf add-mul-special zero-mul add-zero rv-mul_wf rv-disjoint-rv-mul2 rv-disjoint-rv-mul expectation-rv-disjoint expectation-rv-add-fourth expectation-rv-add-cubed expectation-rv-add-squared rv-disjoint-rv-add2 rv-disjoint-rv-add
\mforall{}p:FinProbSpace.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}X,Y:n:\mBbbN{}  {}\mrightarrow{}  RandomVariable(p;f[n]).
    (rv-iid(p;n.f[n];n.X[n])
    {}\mRightarrow{}  rv-iid(p;n.f[n];n.Y[n])
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n  +  1.    (rv-disjoint(p;f[n];Y[i];X[n])  \mwedge{}  rv-disjoint(p;f[n];X[i];Y[n])))
    {}\mRightarrow{}  rv-iid(p;n.f[n];n.X[n]  +  Y[n]))



Date html generated: 2015_07_17-AM-08_02_17
Last ObjectModification: 2015_02_03-PM-09_46_35

Home Index