Nuprl Lemma : groupoid-nerve-filler2_wf
∀[G:Groupoid]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
∀[box:open_box(cubical-nerve(cat(G));I;J;x;i)].
  groupoid-nerve-filler2(cat(G);I;J;box) ∈ cubical-nerve(cat(G))(I) supposing 3 < ||box||
Proof
Definitions occuring in Statement : 
groupoid-nerve-filler2: groupoid-nerve-filler2(C;I;J;box)
, 
cubical-nerve: cubical-nerve(X)
, 
open_box: open_box(X;I;J;x;i)
, 
I-cube: X(I)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
groupoid-cat: cat(G)
, 
groupoid: Groupoid
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
l_exists: (∃x∈L. P[x])
, 
exists: ∃x:A. B[x]
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
guard: {T}
, 
int_seg: {i..j-}
, 
nameset: nameset(L)
, 
false: False
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
prop: ℙ
, 
cons: [a / b]
, 
bfalse: ff
, 
open_box: open_box(X;I;J;x;i)
, 
subtype_rel: A ⊆r B
, 
groupoid-nerve-filler2: groupoid-nerve-filler2(C;I;J;box)
, 
decidable: Dec(P)
, 
name-morph: name-morph(I;J)
, 
groupoid-cat: cat(G)
Lemmas referenced : 
groupoid-edges-commute, 
assert_wf, 
not_wf, 
and_wf, 
nerve_box_edge_wf, 
equal-wf-T-base, 
nil_wf, 
name-morph_wf, 
extd-nameset-nil, 
equal_wf, 
top_wf, 
null_wf3, 
decidable__assert, 
nerve_box_label_wf, 
poset_functor_extend-is-functor, 
cubical-nerve-I-cube, 
groupoid_wf, 
list_wf, 
int_seg_wf, 
coordinate_name_wf, 
subtype_rel_list, 
open_box_wf, 
I-face_wf, 
length_wf, 
less_than_wf, 
false_wf, 
null_cons_lemma, 
product_subtype_list, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_seg_properties, 
length_of_nil_lemma, 
base_wf, 
stuck-spread, 
null_nil_lemma, 
list-cases, 
nameset_wf, 
groupoid-cat_wf, 
cubical-nerve_wf, 
length-open_box-ge-3
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
independent_functionElimination, 
unionElimination, 
sqequalRule, 
productElimination, 
baseClosed, 
independent_isectElimination, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
because_Cache, 
setElimination, 
rename, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
promote_hyp, 
hypothesis_subsumption, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
inlFormation, 
inrFormation, 
dependent_set_memberEquality, 
setEquality
Latex:
\mforall{}[G:Groupoid].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[box:open\_box(cubical-nerve(cat(G));I;J;x;i)].
    groupoid-nerve-filler2(cat(G);I;J;box)  \mmember{}  cubical-nerve(cat(G))(I)  supposing  3  <  ||box||
Date html generated:
2016_06_16-PM-07_13_48
Last ObjectModification:
2016_01_18-PM-04_47_19
Theory : cubical!sets
Home
Index