Nuprl Lemma : length-open_box-ge-3

[X:CubicalSet]. ∀[I:Cname List].
  ∀J:nameset(I) List
    ∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[box:open_box(X;I;J;x;i)].  (3 < ||box||  (∃j1∈J. (∃j2∈J. ¬(j1 j2 ∈ Cname))))


Proof




Definitions occuring in Statement :  open_box: open_box(X;I;J;x;i) cubical-set: CubicalSet nameset: nameset(L) coordinate_name: Cname l_exists: (∃x∈L. P[x]) length: ||as|| list: List int_seg: {i..j-} less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: open_box: open_box(X;I;J;x;i) subtype_rel: A ⊆B uimplies: supposing a nameset: nameset(L) so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} int_seg: {i..j-} coordinate_name: Cname int_upper: {i...} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q false: False less_than: a < b squash: T uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top sq_type: SQType(T) iff: ⇐⇒ Q rev_implies:  Q cons: [a b] less_than': less_than'(a;b) cand: c∧ B l_exists: (∃x∈L. P[x]) le: A ≤ B nat_plus: + true: True select: L[n] sq_stable: SqStable(P) l_member: (x ∈ l) nat: ge: i ≥ 
Lemmas referenced :  length-open_box less_than_wf length_wf I-face_wf open_box_wf subtype_rel_list nameset_wf coordinate_name_wf int_seg_wf list_wf cubical-set_wf cname_deq_wf strong-subtype-deq-subtype l_member_wf strong-subtype-set2 int_seg_properties decidable__lt remove-repeats_wf add-is-int-iff multiply-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf itermMultiply_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_mul_lemma int_formula_prop_wf false_wf decidable__l_exists_better-extract l_exists_wf not_wf equal_wf decidable__not decidable__equal-coordinate_name subtype_base_sq int_subtype_base remove-repeats-length-one list-cases product_subtype_list remove_repeats_nil_lemma length_of_nil_lemma cons_member cons_wf all_wf isect_wf length_of_cons_lemma add_nat_plus length_wf_nat nat_plus_wf nat_plus_properties intformeq_wf int_formula_prop_eq_lemma lelt_wf select_wf sq_stable__l_member sq_stable__le decidable__le intformle_wf int_formula_prop_le_lemma nameset_subtype_base nat_properties le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination hypothesis equalitySymmetry hyp_replacement applyLambdaEquality natural_numberEquality setElimination rename applyEquality independent_isectElimination lambdaEquality because_Cache sqequalRule setEquality productElimination unionElimination pointwiseFunctionality equalityTransitivity promote_hyp imageElimination baseClosed baseApply closedConclusion dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination instantiate cumulativity hypothesis_subsumption inlFormation productEquality dependent_set_memberEquality imageMemberEquality addEquality

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[I:Cname  List].
    \mforall{}J:nameset(I)  List
        \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[box:open\_box(X;I;J;x;i)].
            (3  <  ||box||  {}\mRightarrow{}  (\mexists{}j1\mmember{}J.  (\mexists{}j2\mmember{}J.  \mneg{}(j1  =  j2))))



Date html generated: 2017_10_05-AM-10_20_28
Last ObjectModification: 2017_07_28-AM-11_20_55

Theory : cubical!sets


Home Index