Nuprl Lemma : length-open_box-ge-3
∀[X:CubicalSet]. ∀[I:Cname List].
  ∀J:nameset(I) List
    ∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[box:open_box(X;I;J;x;i)].  (3 < ||box|| 
⇒ (∃j1∈J. (∃j2∈J. ¬(j1 = j2 ∈ Cname))))
Proof
Definitions occuring in Statement : 
open_box: open_box(X;I;J;x;i)
, 
cubical-set: CubicalSet
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
l_exists: (∃x∈L. P[x])
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
open_box: open_box(X;I;J;x;i)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nameset: nameset(L)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
int_seg: {i..j-}
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
less_than: a < b
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
sq_type: SQType(T)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cons: [a / b]
, 
less_than': less_than'(a;b)
, 
cand: A c∧ B
, 
l_exists: (∃x∈L. P[x])
, 
le: A ≤ B
, 
nat_plus: ℕ+
, 
true: True
, 
select: L[n]
, 
sq_stable: SqStable(P)
, 
l_member: (x ∈ l)
, 
nat: ℕ
, 
ge: i ≥ j 
Lemmas referenced : 
length-open_box, 
less_than_wf, 
length_wf, 
I-face_wf, 
open_box_wf, 
subtype_rel_list, 
nameset_wf, 
coordinate_name_wf, 
int_seg_wf, 
list_wf, 
cubical-set_wf, 
cname_deq_wf, 
strong-subtype-deq-subtype, 
l_member_wf, 
strong-subtype-set2, 
int_seg_properties, 
decidable__lt, 
remove-repeats_wf, 
add-is-int-iff, 
multiply-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
itermMultiply_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_wf, 
false_wf, 
decidable__l_exists_better-extract, 
l_exists_wf, 
not_wf, 
equal_wf, 
decidable__not, 
decidable__equal-coordinate_name, 
subtype_base_sq, 
int_subtype_base, 
remove-repeats-length-one, 
list-cases, 
product_subtype_list, 
remove_repeats_nil_lemma, 
length_of_nil_lemma, 
cons_member, 
cons_wf, 
all_wf, 
isect_wf, 
length_of_cons_lemma, 
add_nat_plus, 
length_wf_nat, 
nat_plus_wf, 
nat_plus_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
lelt_wf, 
select_wf, 
sq_stable__l_member, 
sq_stable__le, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
nameset_subtype_base, 
nat_properties, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
natural_numberEquality, 
setElimination, 
rename, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
because_Cache, 
sqequalRule, 
setEquality, 
productElimination, 
unionElimination, 
pointwiseFunctionality, 
equalityTransitivity, 
promote_hyp, 
imageElimination, 
baseClosed, 
baseApply, 
closedConclusion, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
instantiate, 
cumulativity, 
hypothesis_subsumption, 
inlFormation, 
productEquality, 
dependent_set_memberEquality, 
imageMemberEquality, 
addEquality
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[I:Cname  List].
    \mforall{}J:nameset(I)  List
        \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[box:open\_box(X;I;J;x;i)].
            (3  <  ||box||  {}\mRightarrow{}  (\mexists{}j1\mmember{}J.  (\mexists{}j2\mmember{}J.  \mneg{}(j1  =  j2))))
Date html generated:
2017_10_05-AM-10_20_28
Last ObjectModification:
2017_07_28-AM-11_20_55
Theory : cubical!sets
Home
Index