Nuprl Lemma : length-open_box

[X:CubicalSet]. ∀[I:Cname List].
  ∀J:nameset(I) List
    ∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[box:open_box(X;I;J;x;i)].  (||box|| (1 (||remove-repeats(CnameDeq;J)|| 2)) ∈ ℤ)


Proof




Definitions occuring in Statement :  open_box: open_box(X;I;J;x;i) cubical-set: CubicalSet nameset: nameset(L) cname_deq: CnameDeq coordinate_name: Cname remove-repeats: remove-repeats(eq;L) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] all: x:A. B[x] multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nameset: nameset(L) subtype_rel: A ⊆B prop: uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] open_box: open_box(X;I;J;x;i) and: P ∧ Q cand: c∧ B nat: int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T le: A ≤ B less_than': less_than'(a;b) not: ¬A implies:  Q false: False guard: {T} sq_stable: SqStable(P) coordinate_name: Cname int_upper: {i...} ge: i ≥  decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q l_all: (∀x∈L.P[x]) I-face: I-face(X;I) face-name: face-name(f) face-dimension: dimension(f) pi1: fst(t) pi2: snd(t) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b equipollent: B biject: Bij(A;B;f) inject: Inj(A;B;f) respects-equality: respects-equality(S;T) isl: isl(x) true: True subtract: m l_member: (x ∈ l) pairwise: (∀x,y∈L.  P[x; y]) surject: Surj(A;B;f) l_exists: (∃x∈L. P[x])
Lemmas referenced :  cname_deq_wf strong-subtype-deq-subtype coordinate_name_wf l_member_wf strong-subtype-set2 equipollent-nsub length_wf_nat I-face_wf length_wf nameset_wf remove-repeats_wf add_nat_wf istype-void istype-le multiply_nat_wf nat_properties int_seg_properties sq_stable__l_member decidable__equal-coordinate_name sq_stable__le decidable__le add-is-int-iff multiply-is-int-iff full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf itermAdd_wf itermMultiply_wf intformeq_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_wf false_wf open_box_wf subtype_rel_list int_seg_wf list_wf cubical-set_wf mul_bounds_1a equipollent_functionality_wrt_equipollent2 equipollent_transitivity equipollent_inversion equipollent-add union_functionality_wrt_equipollent equipollent_weakening_ext-eq ext-eq_weakening equipollent-multiply product_functionality_wrt_equipollent_left nameset-equipollent select_wf decidable__lt intformless_wf int_formula_prop_less_lemma cons_member eq-cname_wf eqtt_to_assert assert-eq-cname istype-less_than eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal_wf cons_wf biject_wf face-dimension_wf bnot_wf not_wf respects-equality-set-trivial2 istype-assert bool_cases iff_transitivity assert_of_bnot btrue_wf bfalse_wf btrue_neq_bfalse int_subtype_base subtract_wf respects-equality-product respects-equality-trivial subtype-base-respects-equality istype-base set_subtype_base le_wf lelt_wf decidable__equal_int int_seg_subtype_special int_seg_cases face-name_wf decidable__equal_int_seg select_member member_wf istype-false nameset_subtype_base pi1_wf_top pi2_wf product_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid hypothesis applyEquality thin sqequalHypSubstitution isectElimination setEquality hypothesisEquality independent_isectElimination sqequalRule lambdaEquality_alt universeIsType setElimination rename productElimination dependent_functionElimination dependent_set_memberEquality_alt addEquality natural_numberEquality multiplyEquality imageElimination independent_pairFormation voidElimination inhabitedIsType equalityTransitivity equalitySymmetry applyLambdaEquality independent_functionElimination imageMemberEquality baseClosed unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion approximateComputation dependent_pairFormation_alt int_eqEquality Error :memTop,  equalityIstype isect_memberEquality_alt axiomEquality isectIsTypeImplies functionIsTypeImplies unionEquality productEquality because_Cache equalityElimination inlEquality_alt productIsType instantiate cumulativity inrEquality_alt independent_pairEquality unionIsType functionIsType intEquality sqequalBase hypothesis_subsumption

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[I:Cname  List].
    \mforall{}J:nameset(I)  List
        \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[box:open\_box(X;I;J;x;i)].
            (||box||  =  (1  +  (||remove-repeats(CnameDeq;J)||  *  2)))



Date html generated: 2020_05_21-AM-10_51_40
Last ObjectModification: 2020_02_07-PM-09_03_35

Theory : cubical!sets


Home Index