Nuprl Lemma : csm-trans-equiv-path

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[f:{G ⊢ _:Equiv(decode(A);decode(B))}]. ∀[H:j⊢]. ∀[s:H j⟶ G].
  ((trans-equiv-path(G;A;B;f))s trans-equiv-path(H;(A)s;(B)s;(f)s) ∈ {H ⊢ _:(decode((A)s) ⟶ decode((B)s))})


Proof




Definitions occuring in Statement :  trans-equiv-path: trans-equiv-path(G;A;B;f) universe-decode: decode(t) cubical-universe: c𝕌 cubical-equiv: Equiv(T;A) cubical-fun: (A ⟶ B) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a trans-equiv-path: trans-equiv-path(G;A;B;f) all: x:A. B[x] let: let csm-comp-structure: (cA)tau cc-fst: p interval-type: 𝕀 csm-comp: F compose: g composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) squash: T prop: true: True implies:  Q csm-ap-type: (AF)s csm+: tau+ universe-decode: decode(t) csm-ap: (s)x cubical-term-at: u(a) cc-snd: q csm-adjoin: (s;u) pi1: fst(t) iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q universe-comp-fun: CompFun(A) universe-comp-op: compOp(t) comp-op-to-comp-fun: cop-to-cfun(cA) csm-composition: (comp)sigma csm-ap-term: (t)s pi2: snd(t)
Lemmas referenced :  csm-ap-term-universe universe-decode_wf csm-ap-term_wf cube-context-adjoin_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cc-fst_wf cubical-equiv-p cubical-term-eqcd cc-snd_wf cube_set_map_wf istype-cubical-term cubical-equiv_wf istype-cubical-universe-term cubical_set_wf csm-ap-type_wf csm-comp-structure_wf universe-comp-fun_wf subtype_rel_self composition-structure_wf csm-cubical-lam transprt-const_wf cubical-app_wf_fun equiv-fun_wf cube_set_map_cumulativity-i-j cubical-lam_wf squash_wf true_wf cubical-type_wf csm-universe-decode csm-comp-structure_wf2 csm-cubical-equiv csm-equiv-fun cubical-fun_wf csm-cubical-fun equal_wf istype-universe cubical-term_wf csm-transprt-const csm+_wf subset-cubical-term2 sub_cubical_set_self iff_weakening_equal subtype_rel-equal csm-cubical-app
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis instantiate applyEquality sqequalRule equalityTransitivity equalitySymmetry independent_isectElimination lambdaEquality_alt hyp_replacement universeIsType inhabitedIsType dependent_functionElimination imageElimination natural_numberEquality imageMemberEquality baseClosed Error :memTop,  lambdaFormation_alt equalityIstype independent_functionElimination universeEquality productElimination

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(decode(A);decode(B))\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((trans-equiv-path(G;A;B;f))s  =  trans-equiv-path(H;(A)s;(B)s;(f)s))



Date html generated: 2020_05_20-PM-07_40_18
Last ObjectModification: 2020_05_02-PM-08_00_36

Theory : cubical!type!theory


Home Index