Nuprl Lemma : fill_from_comp_wf1

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[comp:Gamma ⊢ CompOp(A)].
  (fill_from_comp(Gamma;A;comp) ∈ I:fset(ℕ)
   ⟶ i:{i:ℕ| ¬i ∈ I} 
   ⟶ rho:Gamma(I+i)
   ⟶ phi:𝔽(I)
   ⟶ u:{I+i,s(phi) ⊢ _:(A)<rho> iota}
   ⟶ a0:cubical-path-0(Gamma;A;I;i;rho;phi;u)
   ⟶ let new-name(I+i) in
          cubical-path-1(Gamma;A;I+i;j;m(i;j)(rho);fl-join(I+i;s(phi);(i=0));fillterm(Gamma;A;I;i;j;rho;a0;u)))


Proof




Definitions occuring in Statement :  fill_from_comp: fill_from_comp(Gamma;A;comp) fillterm: fillterm(Gamma;A;I;i;j;rho;a0;u) composition-op: Gamma ⊢ CompOp(A) cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi fl-join: fl-join(I;x;y) face-presheaf: 𝔽 fl0: (x=0) csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-m: m(i;j) nc-s: s new-name: new-name(I) add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: let: let uall: [x:A]. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fill_from_comp: fill_from_comp(Gamma;A;comp) nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: has-value: (a)↓ subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] composition-op: Gamma ⊢ CompOp(A) face-presheaf: 𝔽 I_cube: A(I) names: names(I) let: let
Lemmas referenced :  new-name_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le value-type-has-value nat_wf not_wf fset-member_wf int-deq_wf set-value-type istype-nat le_wf int-value-type ob_pair_lemma fl0_wf trivial-member-add-name1 cube-set-restriction_wf nc-m_wf fl-join_wf face-presheaf_wf2 nc-s_wf f-subset-add-name fillterm_wf cubical-path-0-fillterm cubical-path-0_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-term_wf cubical-subset_wf csm-ap-type_wf cubical-type-cumulativity csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf strong-subtype-deq-subtype strong-subtype-set3 strong-subtype-self istype-void fset_wf composition-op_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality_alt setElimination rename hypothesis dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination inhabitedIsType lambdaFormation_alt callbyvalueReduce setEquality applyEquality because_Cache intEquality instantiate equalityIstype equalityTransitivity equalitySymmetry setIsType functionIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[comp:Gamma  \mvdash{}  CompOp(A)].
    (fill\_from\_comp(Gamma;A;comp)  \mmember{}  I:fset(\mBbbN{})
      {}\mrightarrow{}  i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\} 
      {}\mrightarrow{}  rho:Gamma(I+i)
      {}\mrightarrow{}  phi:\mBbbF{}(I)
      {}\mrightarrow{}  u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}
      {}\mrightarrow{}  a0:cubical-path-0(Gamma;A;I;i;rho;phi;u)
      {}\mrightarrow{}  let  j  =  new-name(I+i)  in
                    cubical-path-1(Gamma;A;I+i;j;m(i;j)(rho);fl-join(I+i;s(phi);(i=0));
                                                  fillterm(Gamma;A;I;i;j;rho;a0;u)))



Date html generated: 2020_05_20-PM-03_54_22
Last ObjectModification: 2020_04_09-PM-03_32_46

Theory : cubical!type!theory


Home Index