Nuprl Lemma : mk_ctt-type-mng_wf

[X:⊢''']. ∀[lvl:ℕ4]. ∀[T:{X ⊢lvl _}]. ∀[cT:if (lvl =z 0) then composition-structure{i''':l, i:l}(X; T)
                                            if (lvl =z 1) then composition-structure{i''':l, i':l}(X; T)
                                            if (lvl =z 2) then composition-structure{i''':l, i'':l}(X; T)
                                            else composition-structure{i''':l, i''':l}(X; T)
                                            fi ].
  (cttType(levl= lvl
           type= T
           comp= cT) ∈ cttType(X))


Proof




Definitions occuring in Statement :  mk_ctt-type-mng: mk_ctt-type-mng ctt-type-meaning: cttType(X) ctt-level-type: {X ⊢lvl _} composition-structure: Gamma ⊢ Compositon(A) cubical_set: CubicalSet int_seg: {i..j-} ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt subtype_rel: A ⊆B ctt-level-type: {X ⊢lvl _} bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff exists: x:A. B[x] bnot: ¬bb assert: b false: False nequal: a ≠ b ∈  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) prop: mk_ctt-type-mng: mk_ctt-type-mng ctt-type-meaning: cttType(X) istype: istype(T) cubical-type: {X ⊢ _} nat: less_than: a < b squash: T
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties composition-structure_wf subtype_rel-equal ifthenelse_wf eq_int_wf cubical-type_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformnot_wf istype-int int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf int_seg_subtype_special int_seg_cases ctt-level-type-subtype decidable__le intformle_wf int_formula_prop_le_lemma decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than subtype_rel_self ctt-level-type_wf int_seg_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename because_Cache hypothesis productElimination unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination independent_functionElimination equalityTransitivity equalitySymmetry natural_numberEquality hypothesisEquality sqequalRule universeIsType applyEquality universeEquality inhabitedIsType lambdaFormation_alt equalityElimination dependent_pairFormation_alt equalityIstype promote_hyp voidElimination approximateComputation lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation hypothesis_subsumption dependent_set_memberEquality_alt productIsType dependent_pairEquality_alt imageElimination

Latex:
\mforall{}[X:\mvdash{}'''].  \mforall{}[lvl:\mBbbN{}4].  \mforall{}[T:\{X  \mvdash{}lvl  \_\}].  \mforall{}[cT:if  (lvl  =\msubz{}  0)
                                                                                            then  composition-structure\{i''':l,  i:l\}(X;  T)
                                                                                        if  (lvl  =\msubz{}  1)
                                                                                            then  composition-structure\{i''':l,  i':l\}(X;  T)
                                                                                        if  (lvl  =\msubz{}  2)
                                                                                            then  composition-structure\{i''':l,  i'':l\}(X;  T)
                                                                                        else  composition-structure\{i''':l,  i''':l\}(X;  T)
                                                                                        fi  ].
    (cttType(levl=  lvl
                      type=  T
                      comp=  cT)  \mmember{}  cttType(X))



Date html generated: 2020_05_20-PM-07_59_01
Last ObjectModification: 2020_05_05-PM-00_16_35

Theory : cubical!type!theory


Home Index