Nuprl Lemma : geo-lt-add1-iff2

e:BasicGeometry. ∀a1,a2,b1,b2,c1,c2:Point.  (|a1a2| < |b1b2| ⇐⇒ |a1a2| |c1c2| < |b1b2| |c1c2|)


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-add-length: q geo-length: |s| geo-mk-seg: ab basic-geometry: BasicGeometry geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  geo-eq: a ≡ b stable: Stable{P} false: False not: ¬A or: P ∨ Q uiff: uiff(P;Q) respects-equality: respects-equality(S;T) so_apply: x[s] so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] geo-length-type: Length basic-geometry-: BasicGeometry- true: True sq_stable: SqStable(P) squash: T cand: c∧ B geo-le: p ≤ q exists: x:A. B[x] geo-lt: p < q uimplies: supposing a guard: {T} subtype_rel: A ⊆B rev_implies:  Q prop: euclidean-plane: EuclideanPlane basic-geometry: BasicGeometry uall: [x:A]. B[x] member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x]
Lemmas referenced :  geo-between-trivial not-lt-and-symm-le geo-add-length-cancel-right-lt geo-add-length_functionality_wrt_cong geo-congruent-symmetry geo-congruent-sep geo-lt-iff-strict-between-points geo-sep_functionality basic-geometry-_wf minimal-not-not-excluded-middle geo-between_functionality geo-eq_weakening geo-congruent_functionality minimal-double-negation-hyp-elim istype-void geo-between-same-side-or not_wf false_wf stable__geo-between geo-add-length-between geo-congruent-iff-length geo-add-length-assoc respects-equality-set-trivial geo-length-equiv geo-eq_wf respects-equality-quotient1 geo-sep-sym geo-between-outer-trans geo-between-exchange4 geo-between-exchange3 geo-between-inner-trans geo-between-symmetry geo-extend-exists geo-between-sep geo-le-add1 geo-add-length-comm geo-le_wf iff_weakening_equal subtype_rel_self geo-length-equality istype-universe true_wf geo-le-sep sq_stable__geo-sep subtype-geo-length-type geo-length-type_wf equal_wf geo-X_wf geo-O_wf geo-between_wf squash_wf geo-sep_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype euclidean-plane-subtype euclidean-plane-structure-subtype geo-point_wf geo-add-length_wf geo-mk-seg_wf geo-length_wf geo-lt_wf
Rules used in proof :  promote_hyp voidElimination unionIsType functionIsType unionElimination functionEquality unionEquality equalityIstype applyLambdaEquality hyp_replacement natural_numberEquality dependent_set_memberEquality_alt universeEquality equalitySymmetry equalityTransitivity lambdaEquality_alt independent_functionElimination dependent_functionElimination setEquality productEquality productIsType baseClosed imageMemberEquality imageElimination dependent_pairFormation_alt productElimination sqequalRule independent_isectElimination instantiate applyEquality inhabitedIsType because_Cache hypothesis rename setElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut universeIsType independent_pairFormation lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a1,a2,b1,b2,c1,c2:Point.    (|a1a2|  <  |b1b2|  \mLeftarrow{}{}\mRightarrow{}  |a1a2|  +  |c1c2|  <  |b1b2|  +  |c1c2|)



Date html generated: 2019_10_29-AM-09_15_57
Last ObjectModification: 2019_10_18-PM-03_28_38

Theory : euclidean!plane!geometry


Home Index