Nuprl Lemma : in-hull-unique-next2

g:OrientedPlane. ∀xs:{xs:Point List| geo-general-position(g;xs)} . ∀i,j:ℕ||xs||.
  ((¬(i j ∈ ℤ))  (ij ∈ Hull(xs) ∧ 2 < ||xs||)  (∃!k:ℕ||xs||. (((¬(k i ∈ ℤ)) ∧ (k j ∈ ℤ))) ∧ ki ∈ Hull(xs))))


Proof




Definitions occuring in Statement :  in-hull: ij ∈ Hull(xs) geo-general-position: geo-general-position(g;xs) oriented-plane: OrientedPlane geo-point: Point length: ||as|| list: List int_seg: {i..j-} less_than: a < b exists!: !x:T. P[x] all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] guard: {T} not: ¬A subtype_rel: A ⊆B uimplies: supposing a int_seg: {i..j-} uall: [x:A]. B[x] prop: cand: c∧ B and: P ∧ Q exists: x:A. B[x] exists!: !x:T. P[x] implies:  Q member: t ∈ T all: x:A. B[x] squash: T less_than: a < b top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k
Lemmas referenced :  list_wf set_wf less_than_wf geo-general-position_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf oriented-plane_wf subtype_rel_transitivity oriented-plane-subtype euclidean-plane-subtype euclidean-plane-structure-subtype all_wf geo-point_wf length_wf int_seg_wf in-hull_wf equal_wf not_wf in-hull-next2 lelt_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_term_value_constant_lemma int_formula_prop_le_lemma itermConstant_wf intformle_wf decidable__le int_formula_prop_wf int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformeq_wf intformnot_wf intformand_wf full-omega-unsat decidable__equal_int int_seg_properties in-hull-unique2
Rules used in proof :  functionEquality lambdaEquality instantiate sqequalRule applyEquality natural_numberEquality independent_isectElimination dependent_set_memberEquality because_Cache rename setElimination intEquality isectElimination productEquality independent_pairFormation dependent_pairFormation productElimination independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut imageElimination voidEquality voidElimination isect_memberEquality int_eqEquality approximateComputation unionElimination

Latex:
\mforall{}g:OrientedPlane.  \mforall{}xs:\{xs:Point  List|  geo-general-position(g;xs)\}  .  \mforall{}i,j:\mBbbN{}||xs||.
    ((\mneg{}(i  =  j))
    {}\mRightarrow{}  (ij  \mmember{}  Hull(xs)  \mwedge{}  2  <  ||xs||)
    {}\mRightarrow{}  (\mexists{}!k:\mBbbN{}||xs||.  (((\mneg{}(k  =  i))  \mwedge{}  (\mneg{}(k  =  j)))  \mwedge{}  ki  \mmember{}  Hull(xs))))



Date html generated: 2018_05_22-PM-00_07_35
Last ObjectModification: 2017_12_12-PM-04_26_44

Theory : euclidean!plane!geometry


Home Index