Nuprl Lemma : in-hull-unique-next2
∀g:OrientedPlane. ∀xs:{xs:Point List| geo-general-position(g;xs)} . ∀i,j:ℕ||xs||.
  ((¬(i = j ∈ ℤ)) 
⇒ (ij ∈ Hull(xs) ∧ 2 < ||xs||) 
⇒ (∃!k:ℕ||xs||. (((¬(k = i ∈ ℤ)) ∧ (¬(k = j ∈ ℤ))) ∧ ki ∈ Hull(xs))))
Proof
Definitions occuring in Statement : 
in-hull: ij ∈ Hull(xs)
, 
geo-general-position: geo-general-position(g;xs)
, 
oriented-plane: OrientedPlane
, 
geo-point: Point
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
less_than: a < b
, 
exists!: ∃!x:T. P[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
not: ¬A
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
exists!: ∃!x:T. P[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
less_than: a < b
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
Lemmas referenced : 
list_wf, 
set_wf, 
less_than_wf, 
geo-general-position_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
oriented-plane_wf, 
subtype_rel_transitivity, 
oriented-plane-subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
all_wf, 
geo-point_wf, 
length_wf, 
int_seg_wf, 
in-hull_wf, 
equal_wf, 
not_wf, 
in-hull-next2, 
lelt_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
itermConstant_wf, 
intformle_wf, 
decidable__le, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__equal_int, 
int_seg_properties, 
in-hull-unique2
Rules used in proof : 
functionEquality, 
lambdaEquality, 
instantiate, 
sqequalRule, 
applyEquality, 
natural_numberEquality, 
independent_isectElimination, 
dependent_set_memberEquality, 
because_Cache, 
rename, 
setElimination, 
intEquality, 
isectElimination, 
productEquality, 
independent_pairFormation, 
dependent_pairFormation, 
productElimination, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut, 
imageElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
approximateComputation, 
unionElimination
Latex:
\mforall{}g:OrientedPlane.  \mforall{}xs:\{xs:Point  List|  geo-general-position(g;xs)\}  .  \mforall{}i,j:\mBbbN{}||xs||.
    ((\mneg{}(i  =  j))
    {}\mRightarrow{}  (ij  \mmember{}  Hull(xs)  \mwedge{}  2  <  ||xs||)
    {}\mRightarrow{}  (\mexists{}!k:\mBbbN{}||xs||.  (((\mneg{}(k  =  i))  \mwedge{}  (\mneg{}(k  =  j)))  \mwedge{}  ki  \mmember{}  Hull(xs))))
Date html generated:
2018_05_22-PM-00_07_35
Last ObjectModification:
2017_12_12-PM-04_26_44
Theory : euclidean!plane!geometry
Home
Index