Nuprl Lemma : kernel-fun-is-trans-kernel

rv:InnerProductSpace. ∀e:{e:Point| e^2 r1} . ∀f:{h:Point| h ⋅ r0}  ⟶ ℝ ⟶ ℝ.
  (trans-kernel-fun(rv;e;f)
   (∃T:ℝ ⟶ Point ⟶ Point. (translation-group-fun(rv;e;T) ∧ (∀h:{h:Point| h ⋅ r0} . ∀t:ℝ.  (h;t) (f t))))))


Proof




Definitions occuring in Statement :  trans-kernel-fun: trans-kernel-fun(rv;e;f) trans-kernel: ρ(h;t) translation-group-fun: translation-group-fun(rv;e;T) rv-ip: x ⋅ y inner-product-space: InnerProductSpace req: y int-to-real: r(n) real: ss-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q trans-kernel-fun: trans-kernel-fun(rv;e;f) and: P ∧ Q exists: x:A. B[x] uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] pi1: fst(t)
Lemmas referenced :  trans-from-kernel-is-trans kernel-trans-from-kernel trans-from-kernel_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf req_wf rv-ip_wf int-to-real_wf real_wf translation-group-fun_wf all_wf trans-kernel_wf trans-kernel-fun_wf set_wf exists_wf equal_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality addLevel productElimination promote_hyp independent_functionElimination because_Cache dependent_pairFormation lambdaEquality isectElimination setElimination rename dependent_set_memberEquality functionExtensionality applyEquality setEquality instantiate independent_isectElimination sqequalRule natural_numberEquality independent_pairFormation productEquality levelHypothesis functionEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:\{e:Point|  e\^{}2  =  r1\}  .  \mforall{}f:\{h:Point|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}.
    (trans-kernel-fun(rv;e;f)
    {}\mRightarrow{}  (\mexists{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point
              (translation-group-fun(rv;e;T)  \mwedge{}  (\mforall{}h:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}t:\mBbbR{}.    (\mrho{}(h;t)  =  (f  h  t))))))



Date html generated: 2017_10_05-AM-00_25_51
Last ObjectModification: 2017_06_30-PM-02_27_26

Theory : inner!product!spaces


Home Index