Nuprl Lemma : kernel-fun-is-trans-kernel
∀rv:InnerProductSpace. ∀e:{e:Point| e^2 = r1} . ∀f:{h:Point| h ⋅ e = r0}  ⟶ ℝ ⟶ ℝ.
  (trans-kernel-fun(rv;e;f)
  
⇒ (∃T:ℝ ⟶ Point ⟶ Point. (translation-group-fun(rv;e;T) ∧ (∀h:{h:Point| h ⋅ e = r0} . ∀t:ℝ.  (ρ(h;t) = (f h t))))))
Proof
Definitions occuring in Statement : 
trans-kernel-fun: trans-kernel-fun(rv;e;f)
, 
trans-kernel: ρ(h;t)
, 
translation-group-fun: translation-group-fun(rv;e;T)
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
trans-kernel-fun: trans-kernel-fun(rv;e;f)
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
Lemmas referenced : 
trans-from-kernel-is-trans, 
kernel-trans-from-kernel, 
trans-from-kernel_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
req_wf, 
rv-ip_wf, 
int-to-real_wf, 
real_wf, 
translation-group-fun_wf, 
all_wf, 
trans-kernel_wf, 
trans-kernel-fun_wf, 
set_wf, 
exists_wf, 
equal_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
addLevel, 
productElimination, 
promote_hyp, 
independent_functionElimination, 
because_Cache, 
dependent_pairFormation, 
lambdaEquality, 
isectElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
functionExtensionality, 
applyEquality, 
setEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
natural_numberEquality, 
independent_pairFormation, 
productEquality, 
levelHypothesis, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:\{e:Point|  e\^{}2  =  r1\}  .  \mforall{}f:\{h:Point|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}.
    (trans-kernel-fun(rv;e;f)
    {}\mRightarrow{}  (\mexists{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point
              (translation-group-fun(rv;e;T)  \mwedge{}  (\mforall{}h:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}t:\mBbbR{}.    (\mrho{}(h;t)  =  (f  h  t))))))
Date html generated:
2017_10_05-AM-00_25_51
Last ObjectModification:
2017_06_30-PM-02_27_26
Theory : inner!product!spaces
Home
Index