Nuprl Lemma : trans-from-kernel-is-trans
∀rv:InnerProductSpace. ∀e:{e:Point(rv)| e^2 = r1} . ∀f,g:{h:Point(rv)| h ⋅ e = r0}  ⟶ ℝ ⟶ ℝ.
  (trans-kernel-fun(rv;e;f)
  
⇒ (∀h:{h:Point(rv)| h ⋅ e = r0} . ∀r:ℝ.  ((f h (g h r)) = r))
  
⇒ translation-group-fun(rv;e;λt,x. trans-from-kernel(rv;e;f;g;t;x)))
Proof
Definitions occuring in Statement : 
trans-from-kernel: trans-from-kernel(rv;e;f;g;t;x)
, 
trans-kernel-fun: trans-kernel-fun(rv;e;f)
, 
translation-group-fun: translation-group-fun(rv;e;T)
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
trans-kernel-fun: trans-kernel-fun(rv;e;f)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
, 
trans-from-kernel: trans-from-kernel(rv;e;f;g;t;x)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
rv-decomp: rv-decomp(rv;x;e)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rv-sub: x - y
, 
rv-minus: -x
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
translation-group-fun: translation-group-fun(rv;e;T)
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
true: True
, 
stable: Stable{P}
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
nat_plus: ℕ+
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced : 
kernel-fun-properties, 
sq_stable__req, 
rv-ip_wf, 
int-to-real_wf, 
rv-sub_wf, 
rv-mul_wf, 
req_wf, 
Error :ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
real_wf, 
trans-kernel-fun_wf, 
rsub_wf, 
rmul_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
req_functionality, 
req_transitivity, 
rv-ip-sub, 
rsub_functionality, 
req_weakening, 
rv-ip-mul, 
rmul_functionality, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
rv-decomp_wf, 
rv-add_wf, 
Error :sq_stable__ss-eq, 
radd_wf, 
pi2_wf, 
pi1_wf_top, 
Error :ss-eq_weakening, 
itermAdd_wf, 
Error :ss-eq_wf, 
rminus_wf, 
itermMinus_wf, 
rv-0_wf, 
rv-ip-add, 
radd_functionality, 
real_term_value_add_lemma, 
Error :ss-eq_functionality, 
Error :ss-eq_transitivity, 
Error :ss-eq_inversion, 
rv-sub_functionality, 
rv-mul_functionality, 
uiff_transitivity, 
rv-add_functionality, 
rv-mul-mul, 
rv-mul-add-alt, 
rv-add-comm, 
rv-mul0, 
rv-add-0, 
real_term_value_minus_lemma, 
req_inversion, 
not-rneq, 
rneq_wf, 
rless_wf, 
rneq_functionality, 
rneq_irreflexivity, 
req-implies-req, 
trans-from-kernel-sep, 
trans-from-kernel_wf, 
trans-from-kernel_functionality, 
rleq_wf, 
iff_weakening_uiff, 
Error :ss-sep_wf, 
Error :ss-sep_functionality, 
rv-add-sep-iff, 
rv-mul-sep-iff, 
rneq-by-function, 
rv-norm-positive-iff, 
rv-norm_wf, 
rnexp_wf, 
istype-le, 
rleq-int, 
istype-false, 
rless-int, 
rv-norm-eq-iff, 
rnexp2, 
rless_functionality, 
stable__rleq, 
false_wf, 
not_wf, 
trivial-rless-radd, 
rleq_weakening_rless, 
rleq_weakening, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
radd-preserves-req, 
rless_transitivity2, 
rless_transitivity1, 
nat_plus_properties, 
full-omega-unsat, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
rleq-implies-rleq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
independent_functionElimination, 
isectElimination, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
dependent_set_memberEquality_alt, 
applyEquality, 
universeIsType, 
functionIsType, 
setIsType, 
instantiate, 
independent_isectElimination, 
inhabitedIsType, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
promote_hyp, 
applyLambdaEquality, 
independent_pairEquality, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
minusEquality, 
unionElimination, 
inlFormation_alt, 
inrFormation_alt, 
dependent_pairFormation_alt, 
productIsType, 
independent_pairFormation, 
unionEquality, 
functionEquality, 
unionIsType
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:\{e:Point(rv)|  e\^{}2  =  r1\}  .  \mforall{}f,g:\{h:Point(rv)|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}.
    (trans-kernel-fun(rv;e;f)
    {}\mRightarrow{}  (\mforall{}h:\{h:Point(rv)|  h  \mcdot{}  e  =  r0\}  .  \mforall{}r:\mBbbR{}.    ((f  h  (g  h  r))  =  r))
    {}\mRightarrow{}  translation-group-fun(rv;e;\mlambda{}t,x.  trans-from-kernel(rv;e;f;g;t;x)))
Date html generated:
2020_05_20-PM-01_17_30
Last ObjectModification:
2019_12_08-PM-07_01_42
Theory : inner!product!spaces
Home
Index