Nuprl Lemma : kernel-fun-properties

rv:InnerProductSpace. ∀e:Point. ∀f:{h:Point| h ⋅ r0}  ⟶ ℝ ⟶ ℝ.
  ((e^2 r1)
   trans-kernel-fun(rv;e;f)
   ((∀h1,h2:{h:Point| h ⋅ r0} . ∀t1,t2:ℝ.  (h1 ≡ h2  (t1 t2)  ((f h1 t1) (f h2 t2))))
     ∧ (∀g:h:{h:Point| h ⋅ r0}  ⟶ r:ℝ ⟶ ℝ
          ((∀h:{h:Point| h ⋅ r0} . ∀r:ℝ.  ((f (g r)) r))
           ((∀h1,h2:{h:Point| h ⋅ r0} . ∀t1,t2:ℝ.  (g h1 t1 ≠ h2 t2  (h1 h2 ∨ t1 ≠ t2)))
             ∧ (∀h1,h2:{h:Point| h ⋅ r0} . ∀t1,t2:ℝ.  (h1 ≡ h2  (t1 t2)  ((g h1 t1) (g h2 t2)))))))
     ∧ (∃g:h:{h:Point| h ⋅ r0}  ⟶ r:ℝ ⟶ ℝ. ∀h:{h:Point| h ⋅ r0} . ∀r:ℝ.  ((f (g r)) r))))


Proof




Definitions occuring in Statement :  trans-kernel-fun: trans-kernel-fun(rv;e;f) rv-ip: x ⋅ y inner-product-space: InnerProductSpace rneq: x ≠ y req: y int-to-real: r(n) real: ss-eq: x ≡ y ss-sep: y ss-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q trans-kernel-fun: trans-kernel-fun(rv;e;f) and: P ∧ Q cand: c∧ B member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} uimplies: supposing a not: ¬A or: P ∨ Q false: False ss-eq: x ≡ y iff: ⇐⇒ Q rneq: x ≠ y rev_implies:  Q exists: x:A. B[x] pi1: fst(t)
Lemmas referenced :  req_wf ss-eq_wf real_wf set_wf ss-point_wf rv-ip_wf int-to-real_wf rneq_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf all_wf trans-kernel-fun_wf not-rneq rneq_irreflexivity rneq_functionality req_weakening rless-cases rless_wf ss-sep_wf rless_functionality exists_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis applyEquality because_Cache sqequalRule setElimination rename lambdaEquality natural_numberEquality independent_pairFormation functionExtensionality setEquality instantiate independent_isectElimination dependent_set_memberEquality functionEquality dependent_functionElimination independent_functionElimination unionElimination voidElimination inlFormation inrFormation promote_hyp dependent_pairFormation equalityTransitivity equalitySymmetry

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:Point.  \mforall{}f:\{h:Point|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}.
    ((e\^{}2  =  r1)
    {}\mRightarrow{}  trans-kernel-fun(rv;e;f)
    {}\mRightarrow{}  ((\mforall{}h1,h2:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}t1,t2:\mBbbR{}.    (h1  \mequiv{}  h2  {}\mRightarrow{}  (t1  =  t2)  {}\mRightarrow{}  ((f  h1  t1)  =  (f  h2  t2))))
          \mwedge{}  (\mforall{}g:h:\{h:Point|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  r:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}
                    ((\mforall{}h:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}r:\mBbbR{}.    ((f  h  (g  h  r))  =  r))
                    {}\mRightarrow{}  ((\mforall{}h1,h2:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}t1,t2:\mBbbR{}.    (g  h1  t1  \mneq{}  g  h2  t2  {}\mRightarrow{}  (h1  \#  h2  \mvee{}  t1  \mneq{}  t2)))
                          \mwedge{}  (\mforall{}h1,h2:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}t1,t2:\mBbbR{}.
                                    (h1  \mequiv{}  h2  {}\mRightarrow{}  (t1  =  t2)  {}\mRightarrow{}  ((g  h1  t1)  =  (g  h2  t2)))))))
          \mwedge{}  (\mexists{}g:h:\{h:Point|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  r:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}
                  \mforall{}h:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}r:\mBbbR{}.    ((f  h  (g  h  r))  =  r))))



Date html generated: 2017_10_05-AM-00_23_33
Last ObjectModification: 2017_06_27-PM-00_10_56

Theory : inner!product!spaces


Home Index