Nuprl Lemma : trans-from-kernel_wf

[rv:InnerProductSpace]. ∀[e:{e:Point| e^2 r1} ]. ∀[f,g:{h:Point| h ⋅ r0}  ⟶ ℝ ⟶ ℝ]. ∀[t:ℝ]. ∀[x:Point].
  (trans-from-kernel(rv;e;f;g;t;x) ∈ Point)


Proof




Definitions occuring in Statement :  trans-from-kernel: trans-from-kernel(rv;e;f;g;t;x) rv-ip: x ⋅ y inner-product-space: InnerProductSpace req: y int-to-real: r(n) real: ss-point: Point uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a trans-from-kernel: trans-from-kernel(rv;e;f;g;t;x) rv-decomp: rv-decomp(rv;x;e) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] rev_uimplies: rev_uimplies(P;Q) all: x:A. B[x] req_int_terms: t1 ≡ t2 false: False implies:  Q not: ¬A top: Top
Lemmas referenced :  rv-sub_wf rv-mul_wf rv-ip_wf req_wf int-to-real_wf rsub_wf rmul_wf itermSubtract_wf itermVar_wf itermMultiply_wf itermConstant_wf req-iff-rsub-is-0 rv-add_wf inner-product-space_subtype ss-point_wf real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf radd_wf real_wf set_wf req_functionality req_transitivity rv-ip-sub rsub_functionality req_weakening rv-ip-mul rmul_functionality real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_mul_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_set_memberEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache hypothesis sqequalRule natural_numberEquality productElimination independent_isectElimination isect_memberFormation setElimination rename functionExtensionality setEquality instantiate axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality lambdaEquality dependent_functionElimination approximateComputation int_eqEquality intEquality voidElimination voidEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e:\{e:Point|  e\^{}2  =  r1\}  ].  \mforall{}[f,g:\{h:Point|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[t:\mBbbR{}].
\mforall{}[x:Point].
    (trans-from-kernel(rv;e;f;g;t;x)  \mmember{}  Point)



Date html generated: 2017_10_05-AM-00_24_16
Last ObjectModification: 2017_06_30-PM-02_04_38

Theory : inner!product!spaces


Home Index