Nuprl Lemma : rv-add-sep-iff

rv:InnerProductSpace. ∀a,b,h:Point.  (h ⇐⇒ b)


Proof




Definitions occuring in Statement :  inner-product-space: InnerProductSpace rv-add: y ss-sep: y ss-point: Point all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q implies:  Q rv-sub: y rv-minus: -x rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 top: Top iff: ⇐⇒ Q rev_implies:  Q prop:
Lemmas referenced :  ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-eq_wf rv-sub_wf rv-add_wf rv-mul_wf int-to-real_wf radd_wf itermSubtract_wf itermAdd_wf itermConstant_wf req-iff-rsub-is-0 rv-0_wf uiff_transitivity ss-eq_functionality rv-add_functionality ss-eq_weakening rv-mul-linear rv-add-assoc ss-eq_transitivity rv-add-swap rv-add-comm rv-mul-1-add-alt rv-mul_functionality rv-mul0 rv-0-add real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_const_lemma rv-sep-iff ss-sep_wf iff_wf ss-sep_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule because_Cache minusEquality natural_numberEquality productElimination independent_functionElimination dependent_functionElimination approximateComputation lambdaEquality intEquality isect_memberEquality voidElimination voidEquality addLevel independent_pairFormation impliesFunctionality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,h:Point.    (h  +  a  \#  h  +  b  \mLeftarrow{}{}\mRightarrow{}  a  \#  b)



Date html generated: 2017_10_04-PM-11_51_59
Last ObjectModification: 2017_06_26-PM-06_18_05

Theory : inner!product!spaces


Home Index