Nuprl Lemma : kernel-trans-from-kernel

rv:InnerProductSpace. ∀e:{e:Point| e^2 r1} . ∀f,g:{h:Point| h ⋅ r0}  ⟶ ℝ ⟶ ℝ.
  (trans-kernel-fun(rv;e;f)
   (∀h:{h:Point| h ⋅ r0} . ∀r:ℝ.  ((f (g r)) r))
   (∀h:{h:Point| h ⋅ r0} . ∀t:ℝ.  (h;t) (f t))))


Proof




Definitions occuring in Statement :  trans-from-kernel: trans-from-kernel(rv;e;f;g;t;x) trans-kernel-fun: trans-kernel-fun(rv;e;f) trans-kernel: ρ(h;t) rv-ip: x ⋅ y inner-product-space: InnerProductSpace req: y int-to-real: r(n) real: ss-point: Point all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] sq_stable: SqStable(P) squash: T and: P ∧ Q exists: x:A. B[x] trans-kernel-fun: trans-kernel-fun(rv;e;f) prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] trans-from-kernel: trans-from-kernel(rv;e;f;g;t;x) trans-kernel: ρ(h;t) rv-decomp: rv-decomp(rv;x;e) trans-apply: T_t(x) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top rv-sub: y rv-minus: -x rneq: x ≠ y or: P ∨ Q rless: x < y sq_exists: x:{A| B[x]} nat_plus: + less_than: a < b satisfiable_int_formula: satisfiable_int_formula(fmla) iff: ⇐⇒ Q cand: c∧ B
Lemmas referenced :  kernel-fun-properties sq_stable__req rv-ip_wf int-to-real_wf real_wf set_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf req_wf all_wf trans-kernel-fun_wf rv-sub_wf rv-mul_wf rsub_wf rmul_wf itermSubtract_wf itermConstant_wf itermMultiply_wf itermVar_wf req-iff-rsub-is-0 req_functionality req_transitivity rv-ip-sub rsub_functionality rv-ip-mul rmul_functionality req_weakening real_polynomial_null real_term_value_sub_lemma real_term_value_const_lemma real_term_value_mul_lemma real_term_value_var_lemma ss-eq_wf rv-add_wf rmul-zero rv-0_wf uiff_transitivity ss-eq_functionality rv-add_functionality ss-eq_weakening rv-mul-mul rv-add-comm rv-mul_functionality rv-mul0 rv-add-0 rv-sub_functionality radd_wf radd_functionality radd-zero-both not-rneq rneq_wf nat_plus_properties full-omega-unsat intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf rless_functionality squash_wf rv-ip-add rv-ip_functionality sq_stable__and req_witness real_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename because_Cache hypothesis independent_functionElimination isectElimination natural_numberEquality sqequalRule imageMemberEquality baseClosed imageElimination productElimination applyEquality instantiate independent_isectElimination lambdaEquality setEquality functionExtensionality dependent_set_memberEquality functionEquality approximateComputation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality minusEquality unionElimination dependent_pairFormation independent_pairFormation equalityTransitivity equalitySymmetry

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:\{e:Point|  e\^{}2  =  r1\}  .  \mforall{}f,g:\{h:Point|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}.
    (trans-kernel-fun(rv;e;f)
    {}\mRightarrow{}  (\mforall{}h:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}r:\mBbbR{}.    ((f  h  (g  h  r))  =  r))
    {}\mRightarrow{}  (\mforall{}h:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}t:\mBbbR{}.    (\mrho{}(h;t)  =  (f  h  t))))



Date html generated: 2017_10_05-AM-00_25_46
Last ObjectModification: 2017_06_30-PM-02_25_24

Theory : inner!product!spaces


Home Index