Nuprl Lemma : rv-ip-rneq

rv:InnerProductSpace. ∀a1,b1,a2,b2:Point(rv).  (a1 ⋅ b1 ≠ a2 ⋅ b2  (a1 a2 ∨ b1 b2))


Proof




Definitions occuring in Statement :  rv-ip: x ⋅ y inner-product-space: InnerProductSpace rneq: x ≠ y all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] or: P ∨ Q subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  rneq-cases rv-ip_wf Error :ss-sep_wf,  rneq_wf Error :ss-point_wf,  real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  rv-ip-rneq-0 rv-sub_wf rv-sep-iff rsub_wf int-to-real_wf rneq-by-function rminus_wf real_wf req-implies-req req_wf itermSubtract_wf itermVar_wf itermMinus_wf req-iff-rsub-is-0 itermConstant_wf rneq_functionality rv-ip-sub req_weakening real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_var_lemma real_term_value_minus_lemma real_term_value_const_lemma Error :ss-sep-symmetry,  rv-ip-sub2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis independent_functionElimination unionElimination inlFormation_alt universeIsType applyEquality because_Cache sqequalRule inrFormation_alt inhabitedIsType instantiate independent_isectElimination productElimination natural_numberEquality lambdaEquality_alt approximateComputation int_eqEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt voidElimination

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a1,b1,a2,b2:Point(rv).    (a1  \mcdot{}  b1  \mneq{}  a2  \mcdot{}  b2  {}\mRightarrow{}  (a1  \#  a2  \mvee{}  b1  \#  b2))



Date html generated: 2020_05_20-PM-01_11_44
Last ObjectModification: 2019_12_08-PM-07_01_58

Theory : inner!product!spaces


Home Index