Nuprl Lemma : rv-ip-rneq
∀rv:InnerProductSpace. ∀a1,b1,a2,b2:Point(rv).  (a1 ⋅ b1 ≠ a2 ⋅ b2 
⇒ (a1 # a2 ∨ b1 # b2))
Proof
Definitions occuring in Statement : 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rneq: x ≠ y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
rneq-cases, 
rv-ip_wf, 
Error :ss-sep_wf, 
rneq_wf, 
Error :ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
rv-ip-rneq-0, 
rv-sub_wf, 
rv-sep-iff, 
rsub_wf, 
int-to-real_wf, 
rneq-by-function, 
rminus_wf, 
real_wf, 
req-implies-req, 
req_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermMinus_wf, 
req-iff-rsub-is-0, 
itermConstant_wf, 
rneq_functionality, 
rv-ip-sub, 
req_weakening, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_var_lemma, 
real_term_value_minus_lemma, 
real_term_value_const_lemma, 
Error :ss-sep-symmetry, 
rv-ip-sub2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
unionElimination, 
inlFormation_alt, 
universeIsType, 
applyEquality, 
because_Cache, 
sqequalRule, 
inrFormation_alt, 
inhabitedIsType, 
instantiate, 
independent_isectElimination, 
productElimination, 
natural_numberEquality, 
lambdaEquality_alt, 
approximateComputation, 
int_eqEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
voidElimination
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a1,b1,a2,b2:Point(rv).    (a1  \mcdot{}  b1  \mneq{}  a2  \mcdot{}  b2  {}\mRightarrow{}  (a1  \#  a2  \mvee{}  b1  \#  b2))
Date html generated:
2020_05_20-PM-01_11_44
Last ObjectModification:
2019_12_08-PM-07_01_58
Theory : inner!product!spaces
Home
Index