Nuprl Lemma : fdl-1-join-irreducible

[X:Type]
  ∀x,y:Point(free-dl(X)).  (x ∨ 1 ∈ Point(free-dl(X)) ⇐⇒ (x 1 ∈ Point(free-dl(X))) ∨ (y 1 ∈ Point(free-dl(X))))


Proof




Definitions occuring in Statement :  free-dl: free-dl(X) lattice-1: 1 lattice-join: a ∨ b lattice-point: Point(l) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b false: False not: ¬A lattice-point: Point(l) record-select: r.x free-dl: free-dl(X) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] eq_atom: =a y free-dl-type: free-dl-type(X) quotient: x,y:A//B[x; y] lattice-join: a ∨ b so_lambda: λ2y.t[x; y] free-dl-join: free-dl-join(as;bs) append: as bs list_ind: list_ind so_apply: x[s1;s2] fdl-is-1: fdl-is-1(x)
Lemmas referenced :  equal_wf lattice-point_wf free-dl_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf lattice-1_wf bdd-distributive-lattice_wf or_wf fdl-is-1_wf bool_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot fdl-eq-1 free-dl-type_wf not_wf assert_wf equal-wf-base list_wf dlattice-eq_wf subtype_quotient dlattice-eq-equiv bl-exists_wf append_wf isaxiom_wf_list l_member_wf assert-bl-exists l_exists_append l_exists_wf assert_witness lattice_properties bdd-distributive-lattice-subtype-lattice
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule instantiate lambdaEquality productEquality cumulativity because_Cache independent_isectElimination setElimination rename universeEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_pairFormation promote_hyp dependent_functionElimination independent_functionElimination voidElimination inlFormation inrFormation pointwiseFunctionalityForEquality functionEquality hyp_replacement pertypeElimination setEquality addLevel levelHypothesis impliesFunctionality impliesLevelFunctionality applyLambdaEquality

Latex:
\mforall{}[X:Type].  \mforall{}x,y:Point(free-dl(X)).    (x  \mvee{}  y  =  1  \mLeftarrow{}{}\mRightarrow{}  (x  =  1)  \mvee{}  (y  =  1))



Date html generated: 2018_05_22-PM-09_54_40
Last ObjectModification: 2018_05_20-PM-10_11_34

Theory : lattices


Home Index