Nuprl Lemma : psdcff-inj-injection
∀[C:SmallCategory]. ∀[A,B:Type]. ∀[X:ps_context{j:l}(C)]. ∀[I:cat-ob(C)]. ∀[a:X(I)].
  Inj(presheaf-fun-family(C; X; discr(A); discr(B); I; a);A ⟶ B;λw.psdcff-inj(I;w))
Proof
Definitions occuring in Statement : 
psdcff-inj: psdcff-inj(I;w)
, 
discrete-presheaf-type: discr(T)
, 
presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a)
, 
I_set: A(I)
, 
ps_context: __⊢
, 
inject: Inj(A;B;f)
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
inject: Inj(A;B;f)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a)
, 
psdcff-inj: psdcff-inj(I;w)
, 
discrete-presheaf-type: discr(T)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
presheaf-type-at: A(a)
, 
pi1: fst(t)
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
presheaf_type_at_pair_lemma, 
presheaf_type_ap_morph_pair_lemma, 
presheaf-type-at_wf, 
discrete-presheaf-type_wf, 
psc-restriction_wf, 
cat-arrow_wf, 
presheaf-type-ap-morph_wf, 
cat-comp_wf, 
subtype_rel-equal, 
psdcff-inj_wf, 
small-category-cumulativity-2, 
ps_context_cumulativity2, 
presheaf-fun-family_wf, 
I_set_wf, 
cat-ob_wf, 
ps_context_wf, 
istype-universe, 
small-category_wf, 
subtype_rel_self, 
equal_wf, 
squash_wf, 
true_wf, 
cat-id_wf, 
cat-comp-ident2, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
functionExtensionality, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
functionIsType, 
universeIsType, 
equalityIstype, 
independent_isectElimination, 
instantiate, 
cumulativity, 
inhabitedIsType, 
lambdaEquality_alt, 
axiomEquality, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeEquality, 
applyLambdaEquality, 
hyp_replacement, 
equalitySymmetry, 
imageElimination, 
equalityTransitivity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:Type].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[I:cat-ob(C)].  \mforall{}[a:X(I)].
    Inj(presheaf-fun-family(C;  X;  discr(A);  discr(B);  I;  a);A  {}\mrightarrow{}  B;\mlambda{}w.psdcff-inj(I;w))
Date html generated:
2020_05_20-PM-01_35_53
Last ObjectModification:
2020_04_02-PM-06_35_57
Theory : presheaf!models!of!type!theory
Home
Index