Nuprl Lemma : psdcff-inj-injection

[C:SmallCategory]. ∀[A,B:Type]. ∀[X:ps_context{j:l}(C)]. ∀[I:cat-ob(C)]. ∀[a:X(I)].
  Inj(presheaf-fun-family(C; X; discr(A); discr(B); I; a);A ⟶ B;λw.psdcff-inj(I;w))


Proof




Definitions occuring in Statement :  psdcff-inj: psdcff-inj(I;w) discrete-presheaf-type: discr(T) presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) I_set: A(I) ps_context: __⊢ inject: Inj(A;B;f) uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T inject: Inj(A;B;f) all: x:A. B[x] implies:  Q presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) psdcff-inj: psdcff-inj(I;w) discrete-presheaf-type: discr(T) subtype_rel: A ⊆B uimplies: supposing a presheaf-type-at: A(a) pi1: fst(t) prop: squash: T true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  presheaf_type_at_pair_lemma presheaf_type_ap_morph_pair_lemma presheaf-type-at_wf discrete-presheaf-type_wf psc-restriction_wf cat-arrow_wf presheaf-type-ap-morph_wf cat-comp_wf subtype_rel-equal psdcff-inj_wf small-category-cumulativity-2 ps_context_cumulativity2 presheaf-fun-family_wf I_set_wf cat-ob_wf ps_context_wf istype-universe small-category_wf subtype_rel_self equal_wf squash_wf true_wf cat-id_wf cat-comp-ident2 iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt sqequalRule extract_by_obid dependent_functionElimination Error :memTop,  hypothesis functionExtensionality isectElimination hypothesisEquality applyEquality because_Cache functionIsType universeIsType equalityIstype independent_isectElimination instantiate cumulativity inhabitedIsType lambdaEquality_alt axiomEquality functionIsTypeImplies isect_memberEquality_alt isectIsTypeImplies universeEquality applyLambdaEquality hyp_replacement equalitySymmetry imageElimination equalityTransitivity natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:Type].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[I:cat-ob(C)].  \mforall{}[a:X(I)].
    Inj(presheaf-fun-family(C;  X;  discr(A);  discr(B);  I;  a);A  {}\mrightarrow{}  B;\mlambda{}w.psdcff-inj(I;w))



Date html generated: 2020_05_20-PM-01_35_53
Last ObjectModification: 2020_04_02-PM-06_35_57

Theory : presheaf!models!of!type!theory


Home Index