Nuprl Lemma : simplex-face-face

[n:ℤ]. ∀[v:Δ(n)]. ∀[i,j:ℕ2].
  simplex-face(simplex-face(v;i);j) simplex-face(simplex-face(v;j);i 1) ∈ Δ(n 2) supposing j ≤ i


Proof




Definitions occuring in Statement :  simplex-face: simplex-face(v;i) std-simplex: Δ(n) int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_seg: {i..j-} real-vec: ^n lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T simplex-face: simplex-face(v;i) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: std-simplex: Δ(n) decidable: Dec(P) subtype_rel: A ⊆B true: True so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  istype-le int_seg_wf lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-less_than int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf intformnot_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_formula_prop_wf itermAdd_wf itermConstant_wf int_term_value_add_lemma int_term_value_constant_lemma subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__le decidable__lt int-to-real_wf simplex-face_wf subtype_rel-equal std-simplex_wf squash_wf true_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma rleq_wf req_wf rsum_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType because_Cache functionExtensionality productElimination addEquality imageElimination natural_numberEquality lambdaFormation_alt unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination approximateComputation lambdaEquality_alt int_eqEquality independent_pairFormation universeIsType applyEquality dependent_set_memberEquality_alt productIsType imageMemberEquality baseClosed applyLambdaEquality functionIsType

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[v:\mDelta{}(n)].  \mforall{}[i,j:\mBbbN{}n  +  2].
    simplex-face(simplex-face(v;i);j)  =  simplex-face(simplex-face(v;j);i  +  1)  supposing  j  \mleq{}  i



Date html generated: 2019_10_30-AM-11_30_53
Last ObjectModification: 2019_08_08-PM-00_59_22

Theory : real!vectors


Home Index