Nuprl Lemma : Cauchy-Schwarz-not-strict

[n:ℕ]. ∀[x,y:ℝ^n].  (|x⋅y| < (||x|| ||y||)) ⇐⇒ ∀i,j:ℕn.  (((x j) (y i)) ((x i) (y j))))


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| dot-product: x⋅y real-vec: ^n rless: x < y rabs: |x| req: y rmul: b int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A apply: a natural_number: $n
Definitions unfolded in proof :  iff: ⇐⇒ Q and: P ∧ Q implies:  Q all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: prop: so_lambda: λ2x.t[x] real-vec: ^n so_apply: x[s] rev_implies:  Q not: ¬A false: False exists: x:A. B[x] uimplies: supposing a rneq: x ≠ y or: P ∨ Q rless: x < y sq_exists: x:{A| B[x]} nat_plus: + guard: {T} int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  int_seg_wf not_wf exists_wf rneq_wf rmul_wf all_wf req_wf Cauchy-Schwarz-strict rless_wf rabs_wf dot-product_wf real-vec-norm_wf iff_wf real-vec_wf nat_wf req_witness not-rneq rneq_functionality req_weakening nat_plus_properties int_seg_properties nat_properties full-omega-unsat intformless_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality because_Cache applyEquality independent_functionElimination voidElimination addLevel productElimination impliesFunctionality dependent_functionElimination impliesLevelFunctionality isect_memberFormation independent_pairEquality isect_memberEquality independent_isectElimination dependent_pairFormation unionElimination imageElimination approximateComputation int_eqEquality intEquality voidEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (\mneg{}(|x\mcdot{}y|  <  (||x||  *  ||y||))  \mLeftarrow{}{}\mRightarrow{}  \mforall{}i,j:\mBbbN{}n.    (((x  j)  *  (y  i))  =  ((x  i)  *  (y  j))))



Date html generated: 2017_10_03-AM-10_53_00
Last ObjectModification: 2017_06_19-PM-04_20_29

Theory : reals


Home Index