Nuprl Lemma : derivative-rdiv

I:Interval. ∀f1,f2,g1,g2:I ⟶ℝ.
  ((∀x,y:{t:ℝt ∈ I} .  ((x y)  (g1[x] g1[y])))
   (∀x,y:{t:ℝt ∈ I} .  ((x y)  (g2[x] g2[y])))
   f2[x]≠r0 for x ∈ I
   (∀x,y:{t:ℝt ∈ I} .  ((x y)  (f2[x] f2[y])))
   d(f1[x])/dx = λx.g1[x] on I
   d(f2[x])/dx = λx.g2[x] on I
   d((f1[x]/f2[x]))/dx = λx.((f2[x] g1[x]) f1[x] g2[x]/f2[x] f2[x]) on I)


Proof




Definitions occuring in Statement :  derivative: d(f[x])/dx = λz.g[z] on I nonzero-on: f[x]≠r0 for x ∈ I rfun: I ⟶ℝ i-member: r ∈ I interval: Interval rdiv: (x/y) rsub: y req: y rmul: b real: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] rfun: I ⟶ℝ uall: [x:A]. B[x] so_apply: x[s] uimplies: supposing a rneq: x ≠ y sq_stable: SqStable(P) squash: T prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B label: ...$L... t false: False not: ¬A rat_term_to_real: rat_term_to_real(f;t) rtermDivide: num "/" denom rat_term_ind: rat_term_ind rtermVar: rtermVar(var) pi1: fst(t) true: True rtermMultiply: left "*" right rtermConstant: "const" pi2: snd(t) rfun-eq: rfun-eq(I;f;g) r-ap: f(x) rtermSubtract: left "-" right rtermAdd: left "+" right rtermMinus: rtermMinus(num)
Lemmas referenced :  derivative-rinv nonzero-on-implies derivative-mul rdiv_wf int-to-real_wf sq_stable__i-member real_wf i-member_wf req_wf rmul-nonzero rdiv_functionality rminus_wf rmul_wf rminus_functionality rmul_functionality derivative_wf nonzero-on_wf rfun_wf interval_wf radd_wf rsub_wf assert-rat-term-eq2 rtermMultiply_wf rtermVar_wf rtermDivide_wf rtermConstant_wf istype-int derivative_functionality rtermAdd_wf rtermMinus_wf rtermSubtract_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis because_Cache sqequalRule lambdaEquality_alt isectElimination closedConclusion natural_numberEquality applyEquality independent_isectElimination setElimination rename imageMemberEquality baseClosed imageElimination dependent_set_memberEquality_alt functionIsType setIsType universeIsType productElimination independent_pairFormation inhabitedIsType int_eqEquality approximateComputation

Latex:
\mforall{}I:Interval.  \mforall{}f1,f2,g1,g2:I  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (g1[x]  =  g1[y])))
    {}\mRightarrow{}  (\mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (g2[x]  =  g2[y])))
    {}\mRightarrow{}  f2[x]\mneq{}r0  for  x  \mmember{}  I
    {}\mRightarrow{}  (\mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f2[x]  =  f2[y])))
    {}\mRightarrow{}  d(f1[x])/dx  =  \mlambda{}x.g1[x]  on  I
    {}\mRightarrow{}  d(f2[x])/dx  =  \mlambda{}x.g2[x]  on  I
    {}\mRightarrow{}  d((f1[x]/f2[x]))/dx  =  \mlambda{}x.((f2[x]  *  g1[x])  -  f1[x]  *  g2[x]/f2[x]  *  f2[x])  on  I)



Date html generated: 2019_10_30-AM-09_04_01
Last ObjectModification: 2019_04_02-AM-09_45_53

Theory : reals


Home Index