Nuprl Lemma : derivative-rinv

I:Interval. ∀f,g:I ⟶ℝ.
  ((∀x,y:{t:ℝt ∈ I} .  ((x y)  (g[x] g[y])))
   f[x]≠r0 for x ∈ I
   d(f[x])/dx = λx.g[x] on I
   d((r1/f[x]))/dx = λx.(-(g[x])/f[x] f[x]) on I)


Proof




Definitions occuring in Statement :  derivative: d(f[x])/dx = λz.g[z] on I nonzero-on: f[x]≠r0 for x ∈ I rfun: I ⟶ℝ i-member: r ∈ I interval: Interval rdiv: (x/y) req: y rmul: b rminus: -(x) int-to-real: r(n) real: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q derivative: d(f[x])/dx = λz.g[z] on I member: t ∈ T nat_plus: + uall: [x:A]. B[x] nonzero-on: f[x]≠r0 for x ∈ I and: P ∧ Q prop: subtype_rel: A ⊆B uimplies: supposing a so_lambda: λ2x.t[x] rfun: I ⟶ℝ so_apply: x[s] sq_stable: SqStable(P) squash: T subinterval: I ⊆  rneq: x ≠ y label: ...$L... t guard: {T} exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top cand: c∧ B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y less_than: a < b less_than': less_than'(a;b) true: True sq_exists: x:A [B[x]] continuous: f[x] continuous for x ∈ I iff: ⇐⇒ Q rev_implies:  Q rless: x < y int_nzero: -o nequal: a ≠ b ∈  sq_type: SQType(T) req_int_terms: t1 ≡ t2 rdiv: (x/y)
Lemmas referenced :  i-approx-is-subinterval istype-less_than nonzero-on-implies icompact_wf i-approx_wf continuous-implies-functional rfun_subtype proper-continuous-implies differentiable-continuous sq_stable__icompact sq_stable__iproper function-is-continuous rdiv_wf int-to-real_wf subtype_rel_sets_simple real_wf i-member_wf sq_stable__i-member req_wf i-member-approx iproper_wf nat_plus_wf derivative_wf nonzero-on_wf rfun_wf interval_wf req_weakening rdiv_functionality Inorm-bound Inorm_wf rleq_wf rabs_wf imax_wf r-bound_wf imax_nat_plus nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf rmax_wf rmax_ub rleq_functionality req_inversion rmax-int r-bound-property rleq_functionality_wrt_implies rleq_weakening_equal mul_nat_plus i-approx-approx rmin_wf rsub_wf rless_wf rmul_wf rminus_wf rless-int rmin_strict_ub rmin-rleq implies_weakening_uimplies rneq-int int_entire_a mul_nzero subtype_base_sq int_subtype_base nequal_wf rneq_wf rmul_reverses_rless rmul_preserves_rless squash_wf true_wf rabs-rminus subtype_rel_self iff_weakening_equal itermSubtract_wf itermMultiply_wf radd_wf rinv_wf2 itermMinus_wf itermAdd_wf rless_functionality req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma uiff_transitivity req_functionality rmul_functionality rabs-rmul req_transitivity rabs_functionality rminus_functionality rsub_functionality rinv-of-rmul radd_functionality rinv-mul-as-rdiv rinv-as-rdiv rmul-rinv3 rmul-rinv real_term_value_minus_lemma real_term_value_add_lemma rmul-nonneg-case1 zero-rleq-rabs rmul_functionality_wrt_rleq2 rleq-int decidable__le intformle_wf int_formula_prop_le_lemma rmul_preserves_rleq2 rmul-identity1 rmul-int uimplies_transitivity rleq_transitivity r-triangle-inequality rleq_weakening multiply_nat_plus int_term_value_mul_lemma radd_functionality_wrt_rleq rabs-difference-symmetry rabs-rmul-rleq rleq-int-fractions rmul-int-rdiv mul_bounds_1a nat_plus_subtype_nat rneq_functionality set_subtype_base less_than_wf rinv_functionality2 rmul_preserves_rleq square-nonzero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache dependent_set_memberEquality_alt setElimination rename hypothesisEquality hypothesis isectElimination natural_numberEquality independent_functionElimination productElimination universeIsType applyEquality independent_isectElimination sqequalRule lambdaEquality_alt imageMemberEquality baseClosed imageElimination closedConclusion setIsType promote_hyp inhabitedIsType productIsType functionIsType dependent_pairFormation_alt equalityTransitivity equalitySymmetry isectIsType applyLambdaEquality unionElimination approximateComputation int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation equalityIsType1 inlFormation_alt inrFormation_alt dependent_set_memberFormation_alt multiplyEquality instantiate cumulativity intEquality equalityIsType4 universeEquality baseApply

Latex:
\mforall{}I:Interval.  \mforall{}f,g:I  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (g[x]  =  g[y])))
    {}\mRightarrow{}  f[x]\mneq{}r0  for  x  \mmember{}  I
    {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.g[x]  on  I
    {}\mRightarrow{}  d((r1/f[x]))/dx  =  \mlambda{}x.(-(g[x])/f[x]  *  f[x])  on  I)



Date html generated: 2019_10_30-AM-09_02_57
Last ObjectModification: 2018_11_12-AM-11_59_54

Theory : reals


Home Index