Nuprl Lemma : fun-converges-to-pointwise

I:Interval. ∀f:ℕ ⟶ I ⟶ℝ. ∀g:I ⟶ℝ.
  (lim n→∞.f[n;x] = λy.g[y] for x ∈  {∀x:ℝ((x ∈ I)  lim n→∞.f[n;x] g[x])})


Proof




Definitions occuring in Statement :  fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I rfun: I ⟶ℝ i-member: r ∈ I interval: Interval converges-to: lim n→∞.x[n] y real: nat: guard: {T} so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  guard: {T} all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s1;s2] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] and: P ∧ Q fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I converges-to: lim n→∞.x[n] y sq_exists: x:{A| B[x]} nat_plus: + nat: uimplies: supposing a rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top int_upper: {i...}
Lemmas referenced :  i-member_wf real_wf fun-converges-to_wf nat_wf rfun_wf interval_wf i-approx-containing icompact_wf i-approx_wf i-approx-is-subinterval nat_plus_subtype_nat le_wf all_wf rleq_wf rabs_wf rsub_wf rdiv_wf int-to-real_wf rless-int nat_properties nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality functionExtensionality setElimination rename dependent_set_memberEquality setEquality functionEquality dependent_functionElimination independent_functionElimination productElimination because_Cache natural_numberEquality independent_isectElimination inrFormation unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}I:Interval.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.  \mforall{}g:I  {}\mrightarrow{}\mBbbR{}.
    (lim  n\mrightarrow{}\minfty{}.f[n;x]  =  \mlambda{}y.g[y]  for  x  \mmember{}  I  {}\mRightarrow{}  \{\mforall{}x:\mBbbR{}.  ((x  \mmember{}  I)  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.f[n;x]  =  g[x])\})



Date html generated: 2016_10_26-AM-11_13_58
Last ObjectModification: 2016_08_27-PM-01_45_23

Theory : reals


Home Index