Nuprl Lemma : functions-equal-on-rationals

I:Interval
  ((∃u,v:{a:ℝa ∈ I} u ≠ v)
   (∀f,g:I ⟶ℝ.
        ((∀x,y:{x:ℝx ∈ I} .  ((x y)  (f(x) f(y))))
         (∀x,y:{x:ℝx ∈ I} .  ((x y)  (g(x) g(y))))
         (∀z:ℤ. ∀d:ℕ+.  (((r(z)/r(d)) ∈ I)  (f((r(z)/r(d))) g((r(z)/r(d))))))
         (∀a:{x:ℝx ∈ I} (f(a) g(a))))))


Proof




Definitions occuring in Statement :  r-ap: f(x) rfun: I ⟶ℝ i-member: r ∈ I interval: Interval rdiv: (x/y) rneq: x ≠ y req: y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  int:
Definitions unfolded in proof :  so_apply: x[s] top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A decidable: Dec(P) exists: x:A. B[x] rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q or: P ∨ Q guard: {T} rneq: x ≠ y uimplies: supposing a nat_plus: + so_lambda: λ2x.t[x] prop: uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] squash: T sq_stable: SqStable(P)
Lemmas referenced :  interval_wf rneq_wf rfun_wf r-ap_wf all_wf set_wf rationals-dense-in-interval rless_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_plus_properties rless-int int-to-real_wf rdiv_wf req_wf nat_plus_wf exists_wf real_wf i-member_wf functions-equal-on-dense i-member_functionality sq_stable__i-member req_transitivity req_inversion
Rules used in proof :  setEquality functionEquality independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation approximateComputation unionElimination natural_numberEquality independent_functionElimination productElimination inrFormation independent_isectElimination sqequalRule because_Cache rename setElimination hypothesis lambdaEquality isectElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution imageElimination baseClosed imageMemberEquality dependent_set_memberEquality

Latex:
\mforall{}I:Interval
    ((\mexists{}u,v:\{a:\mBbbR{}|  a  \mmember{}  I\}  .  u  \mneq{}  v)
    {}\mRightarrow{}  (\mforall{}f,g:I  {}\mrightarrow{}\mBbbR{}.
                ((\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f(x)  =  f(y))))
                {}\mRightarrow{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (g(x)  =  g(y))))
                {}\mRightarrow{}  (\mforall{}z:\mBbbZ{}.  \mforall{}d:\mBbbN{}\msupplus{}.    (((r(z)/r(d))  \mmember{}  I)  {}\mRightarrow{}  (f((r(z)/r(d)))  =  g((r(z)/r(d))))))
                {}\mRightarrow{}  (\mforall{}a:\{x:\mBbbR{}|  x  \mmember{}  I\}  .  (f(a)  =  g(a))))))



Date html generated: 2017_10_03-AM-10_21_20
Last ObjectModification: 2017_07_31-PM-00_08_29

Theory : reals


Home Index