Nuprl Lemma : functions-equal-on-rationals
∀I:Interval
  ((∃u,v:{a:ℝ| a ∈ I} . u ≠ v)
  
⇒ (∀f,g:I ⟶ℝ.
        ((∀x,y:{x:ℝ| x ∈ I} .  ((x = y) 
⇒ (f(x) = f(y))))
        
⇒ (∀x,y:{x:ℝ| x ∈ I} .  ((x = y) 
⇒ (g(x) = g(y))))
        
⇒ (∀z:ℤ. ∀d:ℕ+.  (((r(z)/r(d)) ∈ I) 
⇒ (f((r(z)/r(d))) = g((r(z)/r(d))))))
        
⇒ (∀a:{x:ℝ| x ∈ I} . (f(a) = g(a))))))
Proof
Definitions occuring in Statement : 
r-ap: f(x)
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
interval: Interval
, 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
int: ℤ
Definitions unfolded in proof : 
so_apply: x[s]
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
decidable: Dec(P)
, 
exists: ∃x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
sq_stable: SqStable(P)
Lemmas referenced : 
interval_wf, 
rneq_wf, 
rfun_wf, 
r-ap_wf, 
all_wf, 
set_wf, 
rationals-dense-in-interval, 
rless_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
nat_plus_properties, 
rless-int, 
int-to-real_wf, 
rdiv_wf, 
req_wf, 
nat_plus_wf, 
exists_wf, 
real_wf, 
i-member_wf, 
functions-equal-on-dense, 
i-member_functionality, 
sq_stable__i-member, 
req_transitivity, 
req_inversion
Rules used in proof : 
setEquality, 
functionEquality, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
approximateComputation, 
unionElimination, 
natural_numberEquality, 
independent_functionElimination, 
productElimination, 
inrFormation, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
rename, 
setElimination, 
hypothesis, 
lambdaEquality, 
isectElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
dependent_set_memberEquality
Latex:
\mforall{}I:Interval
    ((\mexists{}u,v:\{a:\mBbbR{}|  a  \mmember{}  I\}  .  u  \mneq{}  v)
    {}\mRightarrow{}  (\mforall{}f,g:I  {}\mrightarrow{}\mBbbR{}.
                ((\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f(x)  =  f(y))))
                {}\mRightarrow{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (g(x)  =  g(y))))
                {}\mRightarrow{}  (\mforall{}z:\mBbbZ{}.  \mforall{}d:\mBbbN{}\msupplus{}.    (((r(z)/r(d))  \mmember{}  I)  {}\mRightarrow{}  (f((r(z)/r(d)))  =  g((r(z)/r(d))))))
                {}\mRightarrow{}  (\mforall{}a:\{x:\mBbbR{}|  x  \mmember{}  I\}  .  (f(a)  =  g(a))))))
Date html generated:
2017_10_03-AM-10_21_20
Last ObjectModification:
2017_07_31-PM-00_08_29
Theory : reals
Home
Index