Nuprl Lemma : ireal-approx-1
∀[x:ℝ]. ∀[M:ℕ+].  1-approx(x;M;x M)
Proof
Definitions occuring in Statement : 
ireal-approx: j-approx(x;M;z)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ireal-approx: j-approx(x;M;z)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
real: ℝ
, 
subtype_rel: A ⊆r B
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rational-approx: (x within 1/n)
, 
rge: x ≥ y
Lemmas referenced : 
less_than'_wf, 
rsub_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
rabs_wf, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
nat_plus_wf, 
real_wf, 
int-rdiv_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-base, 
int_subtype_base, 
nequal_wf, 
subtype_rel_sets, 
less_than_wf, 
rleq_functionality, 
rabs_functionality, 
rsub_functionality, 
req_weakening, 
req_inversion, 
int-rdiv-req, 
rational-approx_wf, 
rleq_functionality_wrt_implies, 
rational-approx-property, 
rleq_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
applyEquality, 
natural_numberEquality, 
hypothesis, 
setElimination, 
rename, 
independent_isectElimination, 
inrFormation, 
independent_functionElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
multiplyEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
lambdaFormation, 
baseApply, 
closedConclusion, 
baseClosed, 
setEquality, 
applyLambdaEquality
Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[M:\mBbbN{}\msupplus{}].    1-approx(x;M;x  M)
Date html generated:
2018_05_22-PM-01_59_14
Last ObjectModification:
2017_10_25-AM-10_23_32
Theory : reals
Home
Index