Nuprl Lemma : rcp-Jacobi
∀[a,b,c:ℝ^3].  req-vec(3;(a x (b x c)) + (b x (c x a)) + (c x (a x b));λi.r0)
Proof
Definitions occuring in Statement : 
rcp: (a x b)
, 
real-vec-add: X + Y
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
int-to-real: r(n)
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
req-vec: req-vec(n;x;y)
, 
all: ∀x:A. B[x]
, 
rcp: (a x b)
, 
real-vec-add: X + Y
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
real-vec: ℝ^n
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
int_seg_subtype, 
false_wf, 
int_seg_cases, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
req_witness, 
real-vec-add_wf, 
le_wf, 
rcp_wf, 
int-to-real_wf, 
real-vec_wf, 
radd_wf, 
rsub_wf, 
rmul_wf, 
lelt_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermMultiply_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis_subsumption, 
addEquality, 
independent_pairFormation, 
productElimination, 
approximateComputation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[a,b,c:\mBbbR{}\^{}3].    req-vec(3;(a  x  (b  x  c))  +  (b  x  (c  x  a))  +  (c  x  (a  x  b));\mlambda{}i.r0)
Date html generated:
2018_05_22-PM-02_40_55
Last ObjectModification:
2018_05_09-PM-01_09_29
Theory : reals
Home
Index