Nuprl Lemma : rcp-Jacobi

[a,b,c:ℝ^3].  req-vec(3;(a (b c)) (b (c a)) (c (a b));λi.r0)


Proof




Definitions occuring in Statement :  rcp: (a b) real-vec-add: Y req-vec: req-vec(n;x;y) real-vec: ^n int-to-real: r(n) uall: [x:A]. B[x] lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T req-vec: req-vec(n;x;y) all: x:A. B[x] rcp: (a b) real-vec-add: Y select: L[n] cons: [a b] subtract: m int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top nat: subtype_rel: A ⊆B real-vec: ^n less_than: a < b squash: T true: True uiff: uiff(P;Q) req_int_terms: t1 ≡ t2
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties int_seg_subtype false_wf int_seg_cases full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf req_witness real-vec-add_wf le_wf rcp_wf int-to-real_wf real-vec_wf radd_wf rsub_wf rmul_wf lelt_wf itermSubtract_wf itermAdd_wf itermMultiply_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule hypothesis extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination equalityTransitivity equalitySymmetry hypothesis_subsumption addEquality independent_pairFormation productElimination approximateComputation dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality applyEquality dependent_set_memberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[a,b,c:\mBbbR{}\^{}3].    req-vec(3;(a  x  (b  x  c))  +  (b  x  (c  x  a))  +  (c  x  (a  x  b));\mlambda{}i.r0)



Date html generated: 2018_05_22-PM-02_40_55
Last ObjectModification: 2018_05_09-PM-01_09_29

Theory : reals


Home Index