Nuprl Lemma : real-det_wf

[n:ℕ]. ∀[M:ℕn ⟶ ℕn ⟶ ℝ].  (|M| ∈ ℝ)


Proof




Definitions occuring in Statement :  real-det: |M| real: int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-det: |M| let: let nat: injection: A →⟶ B subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: so_apply: x[s] bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  r-list-sum_wf map_wf injection_wf int_seg_wf real_wf permutation-sign_wf eq_int_wf eqtt_to_assert assert_of_eq_int rprod_wf subtract_wf subtract-add-cancel nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-less_than eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int rminus_wf permutations-list_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin closedConclusion natural_numberEquality setElimination rename because_Cache hypothesis lambdaEquality_alt hypothesisEquality applyEquality inhabitedIsType lambdaFormation_alt unionElimination equalityElimination productElimination independent_isectElimination int_eqReduceTrueSq dependent_set_memberEquality_alt independent_pairFormation equalityTransitivity equalitySymmetry dependent_functionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination universeIsType productIsType addEquality equalityIstype promote_hyp instantiate cumulativity int_eqReduceFalseSq axiomEquality functionIsType isectIsTypeImplies

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[M:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbR{}].    (|M|  \mmember{}  \mBbbR{})



Date html generated: 2019_10_30-AM-08_21_00
Last ObjectModification: 2019_09_18-PM-05_15_29

Theory : reals


Home Index