Nuprl Lemma : real-det_wf
∀[n:ℕ]. ∀[M:ℕn ⟶ ℕn ⟶ ℝ]. (|M| ∈ ℝ)
Proof
Definitions occuring in Statement :
real-det: |M|
,
real: ℝ
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
real-det: |M|
,
let: let,
nat: ℕ
,
injection: A →⟶ B
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
so_lambda: λ2x.t[x]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
top: Top
,
prop: ℙ
,
so_apply: x[s]
,
bfalse: ff
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
assert: ↑b
,
nequal: a ≠ b ∈ T
Lemmas referenced :
r-list-sum_wf,
map_wf,
injection_wf,
int_seg_wf,
real_wf,
permutation-sign_wf,
eq_int_wf,
eqtt_to_assert,
assert_of_eq_int,
rprod_wf,
subtract_wf,
subtract-add-cancel,
nat_properties,
decidable__lt,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformless_wf,
itermVar_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
istype-le,
istype-less_than,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_wf,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
rminus_wf,
permutations-list_wf,
istype-nat
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
closedConclusion,
natural_numberEquality,
setElimination,
rename,
because_Cache,
hypothesis,
lambdaEquality_alt,
hypothesisEquality,
applyEquality,
inhabitedIsType,
lambdaFormation_alt,
unionElimination,
equalityElimination,
productElimination,
independent_isectElimination,
int_eqReduceTrueSq,
dependent_set_memberEquality_alt,
independent_pairFormation,
equalityTransitivity,
equalitySymmetry,
dependent_functionElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
int_eqEquality,
isect_memberEquality_alt,
voidElimination,
universeIsType,
productIsType,
addEquality,
equalityIstype,
promote_hyp,
instantiate,
cumulativity,
int_eqReduceFalseSq,
axiomEquality,
functionIsType,
isectIsTypeImplies
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[M:\mBbbN{}n {}\mrightarrow{} \mBbbN{}n {}\mrightarrow{} \mBbbR{}]. (|M| \mmember{} \mBbbR{})
Date html generated:
2019_10_30-AM-08_21_00
Last ObjectModification:
2019_09_18-PM-05_15_29
Theory : reals
Home
Index