Nuprl Lemma : real-vec-norm-dim1

[x:ℝ^1]. (||x|| |x 0|)


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| real-vec: ^n rabs: |x| req: y uall: [x:A]. B[x] apply: a natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A implies:  Q false: False real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) dot-product: x⋅y subtract: m so_lambda: λ2x.t[x] less_than: a < b squash: T so_apply: x[s]
Lemmas referenced :  square-req-iff real-vec-norm_wf istype-void istype-le rabs_wf decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than real-vec-norm-nonneg zero-rleq-rabs req_functionality rnexp_wf dot-product_wf real-vec-norm-squared rabs-rnexp2 req_witness real-vec_wf rmul_wf rsum_single int_seg_properties intformand_wf itermVar_wf int_formula_prop_and_lemma int_term_value_var_lemma itermAdd_wf int_term_value_add_lemma int_seg_wf req_weakening rnexp2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation sqequalRule lambdaFormation_alt voidElimination hypothesis hypothesisEquality applyEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt universeIsType productIsType productElimination because_Cache setElimination rename imageElimination int_eqEquality addEquality

Latex:
\mforall{}[x:\mBbbR{}\^{}1].  (||x||  =  |x  0|)



Date html generated: 2019_10_30-AM-08_08_26
Last ObjectModification: 2019_06_25-PM-03_20_09

Theory : reals


Home Index