Nuprl Lemma : rmul-nonzero-on
∀I:Interval. ∀f,g:I ⟶ℝ.  (f[x]≠r0 for x ∈ I 
⇒ g[x]≠r0 for x ∈ I 
⇒ f[x] * g[x]≠r0 for x ∈ I)
Proof
Definitions occuring in Statement : 
nonzero-on: f[x]≠r0 for x ∈ I
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
rmul: a * b
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
nonzero-on: f[x]≠r0 for x ∈ I
, 
member: t ∈ T
, 
sq_exists: ∃x:{A| B[x]}
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
guard: {T}
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
Lemmas referenced : 
rmul_wf, 
rmul-is-positive, 
rless_wf, 
int-to-real_wf, 
i-member-approx, 
less_than_wf, 
i-member_wf, 
i-approx_wf, 
real_wf, 
set_wf, 
nat_plus_wf, 
icompact_wf, 
nonzero-on_wf, 
rfun_wf, 
interval_wf, 
all_wf, 
rleq_wf, 
rabs_wf, 
equal_wf, 
rleq_weakening_rless, 
rless_transitivity1, 
rleq_weakening_equal, 
rleq_functionality, 
req_weakening, 
rabs-rmul, 
rleq_functionality_wrt_implies, 
rmul_functionality_wrt_rleq2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_set_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesis, 
productElimination, 
independent_functionElimination, 
inlFormation, 
independent_pairFormation, 
productEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination
Latex:
\mforall{}I:Interval.  \mforall{}f,g:I  {}\mrightarrow{}\mBbbR{}.    (f[x]\mneq{}r0  for  x  \mmember{}  I  {}\mRightarrow{}  g[x]\mneq{}r0  for  x  \mmember{}  I  {}\mRightarrow{}  f[x]  *  g[x]\mneq{}r0  for  x  \mmember{}  I)
Date html generated:
2017_10_03-AM-10_26_58
Last ObjectModification:
2017_07_28-AM-08_10_56
Theory : reals
Home
Index