Nuprl Lemma : rmul-nonzero-on

I:Interval. ∀f,g:I ⟶ℝ.  (f[x]≠r0 for x ∈  g[x]≠r0 for x ∈  f[x] g[x]≠r0 for x ∈ I)


Proof




Definitions occuring in Statement :  nonzero-on: f[x]≠r0 for x ∈ I rfun: I ⟶ℝ interval: Interval rmul: b so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q nonzero-on: f[x]≠r0 for x ∈ I member: t ∈ T sq_exists: x:{A| B[x]} uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q prop: nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] label: ...$L... t rfun: I ⟶ℝ guard: {T} uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y
Lemmas referenced :  rmul_wf rmul-is-positive rless_wf int-to-real_wf i-member-approx less_than_wf i-member_wf i-approx_wf real_wf set_wf nat_plus_wf icompact_wf nonzero-on_wf rfun_wf interval_wf all_wf rleq_wf rabs_wf equal_wf rleq_weakening_rless rless_transitivity1 rleq_weakening_equal rleq_functionality req_weakening rabs-rmul rleq_functionality_wrt_implies rmul_functionality_wrt_rleq2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename dependent_set_memberFormation cut introduction extract_by_obid isectElimination hypothesis productElimination independent_functionElimination inlFormation independent_pairFormation productEquality natural_numberEquality dependent_set_memberEquality because_Cache sqequalRule lambdaEquality applyEquality setEquality functionEquality equalityTransitivity equalitySymmetry independent_isectElimination

Latex:
\mforall{}I:Interval.  \mforall{}f,g:I  {}\mrightarrow{}\mBbbR{}.    (f[x]\mneq{}r0  for  x  \mmember{}  I  {}\mRightarrow{}  g[x]\mneq{}r0  for  x  \mmember{}  I  {}\mRightarrow{}  f[x]  *  g[x]\mneq{}r0  for  x  \mmember{}  I)



Date html generated: 2017_10_03-AM-10_26_58
Last ObjectModification: 2017_07_28-AM-08_10_56

Theory : reals


Home Index