Nuprl Lemma : rsum-difference2
∀[k,n,m:ℤ]. ∀[x,y:{k..m + 1-} ⟶ ℝ].
  ((Σ{x[i] | k≤i≤m} - Σ{y[i] | k≤i≤n}) = Σ{x[i] | n + 1≤i≤m}) supposing 
     ((∀i:{k..n + 1-}. (x[i] = y[i])) and 
     (n ≤ m) and 
     (k ≤ n))
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}
, 
rsub: x - y
, 
req: x = y
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rsub: x - y
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
real_term_value: real_term_value(f;t)
, 
int_term_ind: int_term_ind, 
itermSubtract: left (-) right
, 
itermAdd: left (+) right
, 
itermVar: vvar
, 
itermMinus: "-"num
Lemmas referenced : 
rsum-split, 
req_witness, 
rsub_wf, 
rsum_wf, 
int_seg_wf, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
lelt_wf, 
decidable__le, 
all_wf, 
req_wf, 
le_wf, 
real_wf, 
radd_wf, 
rminus_wf, 
req_functionality, 
rsub_functionality, 
req_weakening, 
uiff_transitivity, 
req_inversion, 
radd-assoc, 
radd-ac, 
real_term_polynomial, 
itermSubtract_wf, 
itermMinus_wf, 
int-to-real_wf, 
req-iff-rsub-is-0, 
radd_functionality, 
rminus_functionality, 
rsum_functionality2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
because_Cache, 
addEquality, 
natural_numberEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
lambdaFormation, 
lemma_by_obid
Latex:
\mforall{}[k,n,m:\mBbbZ{}].  \mforall{}[x,y:\{k..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].
    ((\mSigma{}\{x[i]  |  k\mleq{}i\mleq{}m\}  -  \mSigma{}\{y[i]  |  k\mleq{}i\mleq{}n\})  =  \mSigma{}\{x[i]  |  n  +  1\mleq{}i\mleq{}m\})  supposing 
          ((\mforall{}i:\{k..n  +  1\msupminus{}\}.  (x[i]  =  y[i]))  and 
          (n  \mleq{}  m)  and 
          (k  \mleq{}  n))
Date html generated:
2017_10_03-AM-08_58_52
Last ObjectModification:
2017_07_28-AM-07_38_30
Theory : reals
Home
Index