Nuprl Lemma : square-rge-1-iff

x:ℝ(r1 ≤ x^2 ⇐⇒ r1 ≤ |x|)


Proof




Definitions occuring in Statement :  rleq: x ≤ y rabs: |x| rnexp: x^k1 int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q uall: [x:A]. B[x] uimplies: supposing a not: ¬A prop: nat: le: A ≤ B less_than': less_than'(a;b) false: False rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T} uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 top: Top nat_plus: + less_than: a < b squash: T true: True
Lemmas referenced :  square-rleq-1-iff not-rless rabs_wf int-to-real_wf rless_wf rleq_wf rnexp_wf false_wf le_wf real_wf rleq_antisymmetry rleq_functionality_wrt_implies rleq_weakening_rless rleq_weakening_equal rleq_weakening itermSubtract_wf itermConstant_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_const_lemma rnexp2-nonneg req_functionality req_inversion rabs-rnexp req_weakening rabs-of-nonneg rnexp-rless zero-rleq-rabs less_than_wf rless_transitivity1 rless_irreflexivity rless_functionality rnexp-one rnexp_functionality
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_pairFormation isectElimination natural_numberEquality independent_isectElimination dependent_set_memberEquality sqequalRule because_Cache independent_functionElimination equalityTransitivity equalitySymmetry approximateComputation lambdaEquality intEquality isect_memberEquality voidElimination voidEquality imageMemberEquality baseClosed

Latex:
\mforall{}x:\mBbbR{}.  (r1  \mleq{}  x\^{}2  \mLeftarrow{}{}\mRightarrow{}  r1  \mleq{}  |x|)



Date html generated: 2017_10_03-AM-08_50_22
Last ObjectModification: 2017_06_23-PM-05_29_21

Theory : reals


Home Index