Nuprl Lemma : div_minus
∀[a:ℤ]. ∀[b:ℤ-o].  (((-a) ÷ -b) = (a ÷ b) ∈ ℤ)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
divide: n ÷ m
, 
minus: -n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
int_nzero: ℤ-o
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
guard: {T}
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
false: False
, 
prop: ℙ
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
not-equal-2, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-zero, 
add-zero, 
add-associates, 
minus-add, 
minus-minus, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
two-mul, 
add-commutes, 
mul-distributes-right, 
one-mul, 
add_functionality_wrt_le, 
le-add-cancel, 
add-swap, 
add-mul-special, 
equal-wf-T-base, 
int_nzero_wf, 
equal_wf, 
squash_wf, 
true_wf, 
div_anti_sym, 
subtype_rel_self, 
iff_weakening_equal, 
div_anti_sym2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
addEquality, 
hypothesis, 
because_Cache, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
natural_numberEquality, 
productElimination, 
independent_isectElimination, 
unionElimination, 
isectElimination, 
minusEquality, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
multiplyEquality, 
independent_functionElimination, 
baseClosed, 
axiomEquality, 
intEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
divideEquality, 
imageMemberEquality, 
instantiate
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    (((-a)  \mdiv{}  -b)  =  (a  \mdiv{}  b))
Date html generated:
2019_06_20-AM-11_25_12
Last ObjectModification:
2018_08_18-PM-00_47_28
Theory : arithmetic
Home
Index