Nuprl Lemma : no-weakly-safe-extensions

[R:ℕ ⟶ ℕ ⟶ ℙ]. ∀[n:ℕ]. ∀[s:ℕn ⟶ ℕ].  ((∀p:ℕweakly-safe-seq(R;n 1;s.p@n)))  weakly-safe-seq(R;n;s)))


Proof




Definitions occuring in Statement :  weakly-safe-seq: weakly-safe-seq(R;n;s) seq-add: s.x@n int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: all: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q not: ¬A false: False prop: so_lambda: λ2x.t[x] nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) squash: T subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True so_apply: x[s] top: Top exists: x:A. B[x]
Lemmas referenced :  weakly-safe-extension exists_wf nat_wf weakly-safe-seq_wf decidable__le false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf seq-add_wf int_seg_wf all_wf not_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_functionElimination sqequalRule lambdaEquality functionExtensionality applyEquality because_Cache dependent_set_memberEquality addEquality setElimination rename natural_numberEquality dependent_functionElimination unionElimination independent_pairFormation voidElimination productElimination independent_isectElimination imageMemberEquality baseClosed imageElimination minusEquality isect_memberEquality voidEquality intEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}[R:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].
    ((\mforall{}p:\mBbbN{}.  (\mneg{}weakly-safe-seq(R;n  +  1;s.p@n)))  {}\mRightarrow{}  (\mneg{}weakly-safe-seq(R;n;s)))



Date html generated: 2018_05_21-PM-00_03_09
Last ObjectModification: 2018_05_16-AM-09_48_36

Theory : bar-induction


Home Index