Nuprl Lemma : comp_nat_ind_tp
∀[P:ℕ ⟶ ℙ{k}]. ((∀i:ℕ. ((∀j:ℕ. P[j] supposing j < i) ⇒ P[i])) ⇒ {∀i:ℕ. P[i]})
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
nat: ℕ, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
guard: {T}, 
all: ∀x:A. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
nat: ℕ, 
prop: ℙ, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
false: False, 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
subtract: n - m, 
top: Top, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
sq_stable: SqStable(P), 
squash: ↓T
Lemmas referenced : 
nat_wf, 
less_than_wf, 
subtype_rel_self, 
subtract_wf, 
istype-int, 
primrec-wf2, 
all_wf, 
isect_wf, 
member-less_than, 
less_than_transitivity1, 
less_than_irreflexivity, 
decidable__lt, 
istype-false, 
not-lt-2, 
condition-implies-le, 
minus-add, 
istype-void, 
minus-minus, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
less-iff-le, 
add_functionality_wrt_le, 
add-associates, 
le-add-cancel, 
decidable__le, 
not-le-2, 
sq_stable__le, 
zero-add, 
add-zero, 
le_wf, 
add-mul-special, 
zero-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
sqequalRule, 
Error :functionIsType, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :isectIsType, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
applyEquality, 
instantiate, 
universeEquality, 
because_Cache, 
natural_numberEquality, 
Error :setIsType, 
Error :lambdaEquality_alt, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
productElimination, 
addEquality, 
minusEquality, 
Error :isect_memberEquality_alt, 
Error :dependent_set_memberEquality_alt, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
multiplyEquality
Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}\{k\}].  ((\mforall{}i:\mBbbN{}.  ((\mforall{}j:\mBbbN{}.  P[j]  supposing  j  <  i)  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  \{\mforall{}i:\mBbbN{}.  P[i]\})
Date html generated:
2019_06_20-AM-11_27_58
Last ObjectModification:
2018_10_06-AM-10_12_47
Theory : call!by!value_2
Home
Index