Nuprl Lemma : hd-copathAgree

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[x,y:copath(a.B[a];w)].
  (copath-hd(x) copath-hd(y) ∈ coW-dom(a.B[a];w)) supposing 
     (0 < copath-length(y) and 
     0 < copath-length(x) and 
     copathAgree(a.B[a];w;x;y))


Proof




Definitions occuring in Statement :  copathAgree: copathAgree(a.B[a];w;x;y) copath-hd: copath-hd(p) copath-length: copath-length(p) copath: copath(a.B[a];w) coW-dom: coW-dom(a.B[a];w) coW: coW(A;a.B[a]) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a copath: copath(a.B[a];w) copath-length: copath-length(p) pi1: fst(t) copathAgree: copathAgree(a.B[a];w;x;y) all: x:A. B[x] nat: decidable: Dec(P) or: P ∨ Q less_than: a < b and: P ∧ Q less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A implies:  Q false: False prop: coPath: coPath(a.B[a];w;n) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B guard: {T} copath-hd: copath-hd(p) pi2: snd(t) coPathAgree: coPathAgree(a.B[a];n;w;p;q) sq_type: SQType(T) uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q rev_implies:  Q bfalse: ff
Lemmas referenced :  decidable__lt top_wf less_than_wf copath-length_wf copathAgree_wf eq_int_wf less_than_transitivity2 le_weakening2 less_than_transitivity1 le_weakening less_than_irreflexivity assert_wf bnot_wf not_wf equal-wf-T-base bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule extract_by_obid dependent_functionElimination setElimination rename hypothesisEquality hypothesis unionElimination because_Cache lessCases isectElimination sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality natural_numberEquality imageMemberEquality baseClosed lambdaFormation imageElimination independent_functionElimination lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry independent_isectElimination intEquality instantiate cumulativity impliesFunctionality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[x,y:copath(a.B[a];w)].
    (copath-hd(x)  =  copath-hd(y))  supposing 
          (0  <  copath-length(y)  and 
          0  <  copath-length(x)  and 
          copathAgree(a.B[a];w;x;y))



Date html generated: 2018_07_25-PM-01_41_00
Last ObjectModification: 2018_06_01-AM-11_33_40

Theory : co-recursion


Home Index