Nuprl Lemma : cantor2baire2cantor

a:ℕ ⟶ 𝔹(initF(a)  (baire2cantor(cantor2baire(a)) a ∈ (ℕ ⟶ 𝔹)))


Proof




Definitions occuring in Statement :  initF: initF(a) cantor2baire: cantor2baire(a) baire2cantor: baire2cantor(a) nat: bool: 𝔹 all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  nequal: a ≠ b ∈  bnot: ¬bb uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 subtype_rel: A ⊆B exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  initF: initF(a) rev_implies:  Q iff: ⇐⇒ Q bfalse: ff assert: b btrue: tt ifthenelse: if then else fi  eq_int: (i =z j) top: Top cantor2baire-aux: cantor2baire-aux(a;n) nat-pred: n-1 guard: {T} sq_type: SQType(T) so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a or: P ∨ Q decidable: Dec(P) uall: [x:A]. B[x] prop: not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: member: t ∈ T cantor2baire: cantor2baire(a) baire2cantor: baire2cantor(a) implies:  Q all: x:A. B[x]
Lemmas referenced :  btrue_wf neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal equal_wf eqff_to_assert int_term_value_add_lemma itermAdd_wf assert_of_eq_int nat-pred_wf cantor2baire-aux_wf eq_int_wf eqtt_to_assert equal-wf-base int_formula_prop_wf decidable__equal_int int_formula_prop_le_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties cantor2baire-aux-pos assert_wf btrue_neq_bfalse assert_elim bfalse_wf iff_imp_equal_bool primrec0_lemma int_subtype_base set_subtype_base subtype_base_sq bool_wf initF_wf nat_wf le_wf false_wf decidable__equal_nat
Rules used in proof :  promote_hyp addEquality productElimination equalityElimination baseClosed computeAll int_eqEquality dependent_pairFormation rename setElimination levelHypothesis because_Cache addLevel voidEquality voidElimination isect_memberEquality independent_functionElimination equalitySymmetry equalityTransitivity lambdaEquality intEquality independent_isectElimination cumulativity instantiate functionEquality applyEquality unionElimination isectElimination hypothesis independent_pairFormation natural_numberEquality dependent_set_memberEquality hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction sqequalRule functionExtensionality cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  (initF(a)  {}\mRightarrow{}  (baire2cantor(cantor2baire(a))  =  a))



Date html generated: 2017_04_21-AM-11_22_34
Last ObjectModification: 2017_04_20-PM-03_53_37

Theory : continuity


Home Index