Nuprl Lemma : cantor2baire2cantor
∀a:ℕ ⟶ 𝔹. (initF(a) 
⇒ (baire2cantor(cantor2baire(a)) = a ∈ (ℕ ⟶ 𝔹)))
Proof
Definitions occuring in Statement : 
initF: initF(a)
, 
cantor2baire: cantor2baire(a)
, 
baire2cantor: baire2cantor(a)
, 
nat: ℕ
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
nequal: a ≠ b ∈ T 
, 
bnot: ¬bb
, 
uiff: uiff(P;Q)
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
initF: initF(a)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
bfalse: ff
, 
assert: ↑b
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
top: Top
, 
cantor2baire-aux: cantor2baire-aux(a;n)
, 
nat-pred: n-1
, 
guard: {T}
, 
sq_type: SQType(T)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
member: t ∈ T
, 
cantor2baire: cantor2baire(a)
, 
baire2cantor: baire2cantor(a)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
btrue_wf, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
int_term_value_add_lemma, 
itermAdd_wf, 
assert_of_eq_int, 
nat-pred_wf, 
cantor2baire-aux_wf, 
eq_int_wf, 
eqtt_to_assert, 
equal-wf-base, 
int_formula_prop_wf, 
decidable__equal_int, 
int_formula_prop_le_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_properties, 
cantor2baire-aux-pos, 
assert_wf, 
btrue_neq_bfalse, 
assert_elim, 
bfalse_wf, 
iff_imp_equal_bool, 
primrec0_lemma, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
bool_wf, 
initF_wf, 
nat_wf, 
le_wf, 
false_wf, 
decidable__equal_nat
Rules used in proof : 
promote_hyp, 
addEquality, 
productElimination, 
equalityElimination, 
baseClosed, 
computeAll, 
int_eqEquality, 
dependent_pairFormation, 
rename, 
setElimination, 
levelHypothesis, 
because_Cache, 
addLevel, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
lambdaEquality, 
intEquality, 
independent_isectElimination, 
cumulativity, 
instantiate, 
functionEquality, 
applyEquality, 
unionElimination, 
isectElimination, 
hypothesis, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
sqequalRule, 
functionExtensionality, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  (initF(a)  {}\mRightarrow{}  (baire2cantor(cantor2baire(a))  =  a))
Date html generated:
2017_04_21-AM-11_22_34
Last ObjectModification:
2017_04_20-PM-03_53_37
Theory : continuity
Home
Index