Nuprl Lemma : implies-eq-upto-baire2cantor

a,b:ℕ ⟶ ℕ. ∀n:ℕ.  ((a b ∈ (ℕn ⟶ ℕ))  (baire2cantor(a) baire2cantor(b) ∈ (ℕn ⟶ 𝔹)))


Proof




Definitions occuring in Statement :  baire2cantor: baire2cantor(a) int_seg: {i..j-} nat: bool: 𝔹 all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q baire2cantor: baire2cantor(a) nat-pred: n-1 member: t ∈ T uall: [x:A]. B[x] int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A guard: {T} nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: bfalse: ff subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  squash: T true: True
Lemmas referenced :  eq_int_wf eqtt_to_assert assert_of_eq_int istype-false int_seg_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf istype-le istype-less_than eqff_to_assert set_subtype_base lelt_wf int_subtype_base bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot neg_assert_of_eq_int subtract_wf decidable__le intformle_wf itermSubtract_wf int_formula_prop_le_lemma int_term_value_subtract_lemma ifthenelse_wf squash_wf true_wf istype-universe bfalse_wf btrue_wf int_seg_wf subtype_rel_function nat_wf int_seg_subtype_nat subtype_rel_self istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut Error :functionExtensionality_alt,  sqequalRule thin introduction extract_by_obid sqequalHypSubstitution isectElimination setElimination rename hypothesisEquality hypothesis natural_numberEquality Error :inhabitedIsType,  unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination int_eqReduceTrueSq Error :dependent_set_memberEquality_alt,  independent_pairFormation dependent_functionElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  Error :productIsType,  because_Cache Error :equalityIsType4,  baseApply closedConclusion baseClosed applyEquality intEquality promote_hyp instantiate cumulativity int_eqReduceFalseSq Error :equalityIsType1,  imageElimination universeEquality applyLambdaEquality imageMemberEquality Error :functionIsType

Latex:
\mforall{}a,b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}n:\mBbbN{}.    ((a  =  b)  {}\mRightarrow{}  (baire2cantor(a)  =  baire2cantor(b)))



Date html generated: 2019_06_20-PM-03_07_42
Last ObjectModification: 2018_10_30-PM-02_07_53

Theory : continuity


Home Index