Nuprl Lemma : implies-eq-upto-baire2cantor
∀a,b:ℕ ⟶ ℕ. ∀n:ℕ.  ((a = b ∈ (ℕn ⟶ ℕ)) ⇒ (baire2cantor(a) = baire2cantor(b) ∈ (ℕn ⟶ 𝔹)))
Proof
Definitions occuring in Statement : 
baire2cantor: baire2cantor(a), 
int_seg: {i..j-}, 
nat: ℕ, 
bool: 𝔹, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
baire2cantor: baire2cantor(a), 
nat-pred: n-1, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
int_seg: {i..j-}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
guard: {T}, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
prop: ℙ, 
bfalse: ff, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
squash: ↓T, 
true: True
Lemmas referenced : 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
istype-false, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-less_than, 
eqff_to_assert, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
assert-bnot, 
neg_assert_of_eq_int, 
subtract_wf, 
decidable__le, 
intformle_wf, 
itermSubtract_wf, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
ifthenelse_wf, 
squash_wf, 
true_wf, 
istype-universe, 
bfalse_wf, 
btrue_wf, 
int_seg_wf, 
subtype_rel_function, 
nat_wf, 
int_seg_subtype_nat, 
subtype_rel_self, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
Error :functionExtensionality_alt, 
sqequalRule, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
Error :inhabitedIsType, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
int_eqReduceTrueSq, 
Error :dependent_set_memberEquality_alt, 
independent_pairFormation, 
dependent_functionElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :universeIsType, 
Error :productIsType, 
because_Cache, 
Error :equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
int_eqReduceFalseSq, 
Error :equalityIsType1, 
imageElimination, 
universeEquality, 
applyLambdaEquality, 
imageMemberEquality, 
Error :functionIsType
Latex:
\mforall{}a,b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}n:\mBbbN{}.    ((a  =  b)  {}\mRightarrow{}  (baire2cantor(a)  =  baire2cantor(b)))
Date html generated:
2019_06_20-PM-03_07_42
Last ObjectModification:
2018_10_30-PM-02_07_53
Theory : continuity
Home
Index