Nuprl Lemma : implies_l_member_append

T:Type. ∀l1,l2:T List. ∀v:T.  (((v ∈ l1) ∨ (v ∈ l2))  (v ∈ l1 l2))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) append: as bs list: List all: x:A. B[x] implies:  Q or: P ∨ Q universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q l_member: (x ∈ l) or: P ∨ Q exists: x:A. B[x] cand: c∧ B member: t ∈ T uall: [x:A]. B[x] prop: top: Top ge: i ≥  nat: decidable: Dec(P) false: False le: A ≤ B and: P ∧ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) squash: T int_seg: {i..j-} lelt: i ≤ j < k true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) less_than: a < b subtract: m
Lemmas referenced :  l_member_wf list_wf istype-universe length-append istype-void non_neg_length nat_properties decidable__lt length_wf full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf intformle_wf itermConstant_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf equal_wf squash_wf true_wf select_append_front decidable__le le_wf istype-less_than subtype_rel_self iff_weakening_equal append_wf select_wf add_nat_wf length_wf_nat add-is-int-iff set_subtype_base int_subtype_base intformeq_wf int_formula_prop_eq_lemma false_wf select_append_back add-associates minus-one-mul add-swap add-mul-special zero-mul add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  sqequalHypSubstitution unionElimination thin productElimination sqequalRule Error :unionIsType,  Error :universeIsType,  cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis Error :inhabitedIsType,  instantiate universeEquality Error :dependent_pairFormation_alt,  Error :isect_memberEquality_alt,  voidElimination because_Cache setElimination rename dependent_functionElimination addEquality natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :lambdaEquality_alt,  int_eqEquality independent_pairFormation applyEquality imageElimination equalityTransitivity equalitySymmetry Error :dependent_set_memberEquality_alt,  Error :productIsType,  imageMemberEquality baseClosed Error :equalityIsType1,  applyLambdaEquality pointwiseFunctionality promote_hyp intEquality baseApply closedConclusion

Latex:
\mforall{}T:Type.  \mforall{}l1,l2:T  List.  \mforall{}v:T.    (((v  \mmember{}  l1)  \mvee{}  (v  \mmember{}  l2))  {}\mRightarrow{}  (v  \mmember{}  l1  @  l2))



Date html generated: 2019_06_20-PM-02_57_09
Last ObjectModification: 2018_10_17-AM-10_43_40

Theory : continuity


Home Index