Nuprl Lemma : make-strict-agrees

[alpha:ℕ ⟶ ℕ]. ∀[n:ℕ].  ∀[i:ℕn]. ((make-strict(alpha) i) (alpha i) ∈ ℤsupposing strictly-increasing-seq(n;alpha)


Proof




Definitions occuring in Statement :  make-strict: make-strict(alpha) strictly-increasing-seq: strictly-increasing-seq(n;s) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q all: x:A. B[x] nat: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q strictly-increasing-seq: strictly-increasing-seq(n;s) make-strict: make-strict(alpha) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q strict-inc: StrictInc squash: T true: True
Lemmas referenced :  int_seg_wf strictly-increasing-seq_wf subtype_rel_dep_function nat_wf int_seg_subtype_nat istype-false istype-nat nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties decidable__le intformnot_wf int_formula_prop_not_lemma istype-le subtract-1-ge-0 decidable__lt itermSubtract_wf int_term_value_subtract_lemma subtract_wf primrec-unroll lt_int_wf eqtt_to_assert assert_of_lt_int decidable__equal_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf subtract-add-cancel make-strict_wf squash_wf true_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin sqequalHypSubstitution independent_functionElimination hypothesis dependent_functionElimination hypothesisEquality Error :universeIsType,  extract_by_obid isectElimination natural_numberEquality setElimination rename sqequalRule Error :isect_memberEquality_alt,  axiomEquality Error :isectIsTypeImplies,  Error :inhabitedIsType,  applyEquality Error :lambdaEquality_alt,  intEquality independent_isectElimination because_Cache independent_pairFormation Error :lambdaFormation_alt,  Error :functionIsType,  intWeakElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality voidElimination Error :functionIsTypeImplies,  productElimination Error :dependent_set_memberEquality_alt,  unionElimination Error :productIsType,  equalityElimination equalityTransitivity equalitySymmetry Error :equalityIstype,  promote_hyp instantiate cumulativity imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[n:\mBbbN{}].
    \mforall{}[i:\mBbbN{}n].  ((make-strict(alpha)  i)  =  (alpha  i))  supposing  strictly-increasing-seq(n;alpha)



Date html generated: 2019_06_20-PM-02_57_20
Last ObjectModification: 2019_02_06-PM-03_51_03

Theory : continuity


Home Index