Nuprl Lemma : make-strict-agrees
∀[alpha:ℕ ⟶ ℕ]. ∀[n:ℕ]. ∀[i:ℕn]. ((make-strict(alpha) i) = (alpha i) ∈ ℤ) supposing strictly-increasing-seq(n;alpha)
Proof
Definitions occuring in Statement :
make-strict: make-strict(alpha)
,
strictly-increasing-seq: strictly-increasing-seq(n;s)
,
int_seg: {i..j-}
,
nat: ℕ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
nat: ℕ
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
prop: ℙ
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
decidable: Dec(P)
,
or: P ∨ Q
,
strictly-increasing-seq: strictly-increasing-seq(n;s)
,
make-strict: make-strict(alpha)
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
strict-inc: StrictInc
,
squash: ↓T
,
true: True
Lemmas referenced :
int_seg_wf,
strictly-increasing-seq_wf,
subtype_rel_dep_function,
nat_wf,
int_seg_subtype_nat,
istype-false,
istype-nat,
nat_properties,
full-omega-unsat,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
istype-less_than,
int_seg_properties,
decidable__le,
intformnot_wf,
int_formula_prop_not_lemma,
istype-le,
subtract-1-ge-0,
decidable__lt,
itermSubtract_wf,
int_term_value_subtract_lemma,
subtract_wf,
primrec-unroll,
lt_int_wf,
eqtt_to_assert,
assert_of_lt_int,
decidable__equal_int,
intformeq_wf,
int_formula_prop_eq_lemma,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_wf,
bool_subtype_base,
assert-bnot,
iff_weakening_uiff,
assert_wf,
less_than_wf,
subtract-add-cancel,
make-strict_wf,
squash_wf,
true_wf,
subtype_rel_self,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
introduction,
cut,
thin,
sqequalHypSubstitution,
independent_functionElimination,
hypothesis,
dependent_functionElimination,
hypothesisEquality,
Error :universeIsType,
extract_by_obid,
isectElimination,
natural_numberEquality,
setElimination,
rename,
sqequalRule,
Error :isect_memberEquality_alt,
axiomEquality,
Error :isectIsTypeImplies,
Error :inhabitedIsType,
applyEquality,
Error :lambdaEquality_alt,
intEquality,
independent_isectElimination,
because_Cache,
independent_pairFormation,
Error :lambdaFormation_alt,
Error :functionIsType,
intWeakElimination,
approximateComputation,
Error :dependent_pairFormation_alt,
int_eqEquality,
voidElimination,
Error :functionIsTypeImplies,
productElimination,
Error :dependent_set_memberEquality_alt,
unionElimination,
Error :productIsType,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
Error :equalityIstype,
promote_hyp,
instantiate,
cumulativity,
imageElimination,
imageMemberEquality,
baseClosed,
universeEquality
Latex:
\mforall{}[alpha:\mBbbN{} {}\mrightarrow{} \mBbbN{}]. \mforall{}[n:\mBbbN{}].
\mforall{}[i:\mBbbN{}n]. ((make-strict(alpha) i) = (alpha i)) supposing strictly-increasing-seq(n;alpha)
Date html generated:
2019_06_20-PM-02_57_20
Last ObjectModification:
2019_02_06-PM-03_51_03
Theory : continuity
Home
Index